-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathClmlmp2Cab.m
60 lines (54 loc) · 2.03 KB
/
Clmlmp2Cab.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
function varargout=Clmlmp2Cab(Clmlmp,TH,eigs)
% [Cab,Cab_scaled,G,V]=CLMLMP2CAB(Clmlmp,TH,eigs)
%
% Takes a spherical harmonic covariance matrix and calculates the
% covariance of a desired Slepian basis. (Cab = G'*Clmlmp*G) The Slepian
% basis will be the same bandwidth as the spectral covariance data.
%
% INPUT:
%
% Clmlmp Spherical harmonic covariance matrix, assumed to be ordered as
% in GLMALPHA (not KERNELC)
% TH The localization domain (a region string like 'greenland'
% OR [lon lat] an ordered list defining a closed curve [degrees]
% OR a cell containing a region and a buffer such
% as {'greenland' 0.5})
%
% eigs Number of eigenfunctions you want in the basis
% 0 - up to the Shannon number [default]
%
% OUTPUT:
%
% Cab Slepian basis covariance matrix
% Cab_scaled Scaled Slepian basis covariance matrix
% G The unitary matrix of localization coefficients (sorted)
% V The eigenvalues (sorted)
%
% SEE ALSO:
%
% Last modified by charig-at-princeton.edu 3/16/2016
% Determine parameters and set defaults
defval('Lwindow',20)
defval('TH','greenland')
defval('pars',10)
% Determine the bandwidth of our data. Assume Clmlmp starts at l=0.
[n,m]=size(Clmlmp);
Ldata=addmoff(n,'r');
% J is how many Slepian functions we want to see
defval('eigs',round((Ldata+1)^2*spharea(TH)))
% Get a Slepian basis
[G,V,EL,EM,N,GM2AL,MTAP,IMTAP]=glmalpha(TH,Ldata,[],0,[],[],eigs);
% Sort by decreasing eigenvalue
[V,vi]=sort(V,'descend');
G=G(:,vi); if ~isnan(MTAP); MTAP=MTAP(vi); end
% If you don't do this, the eigenfunctions are ordered in the way
% that they correspond to single-orders back when, unrotated, they
% belonged to a polar cap, and the eigenvalues are sorted within
% these blocks. This is useful for, e.g. SPIE2009_1 a la SDSNEEUW.
% Slepian domain covariance
Cab = G'*Clmlmp*G;
% Scaled version
Cab_scaled=Cab./[diag(sqrt(Cab))*diag(sqrt(Cab))'];
% Collect output
varns={Cab,Cab_scaled,G,V};
varargout=varns(1:nargout);