-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparray_tools.h
896 lines (705 loc) · 33 KB
/
parray_tools.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
/*/////////////////////////////////////////////////////////////////////////////
ADV library
Author:
Michael Kilburn
/////////////////////////////////////////////////////////////////////////////*/
#ifndef PARRAY_TOOLS_H_2016_09_05_23_21_06_660_H_
#define PARRAY_TOOLS_H_2016_09_05_23_21_06_660_H_
#include "parray.h"
#include <type_traits>
#include <cctype>
#include <cwctype>
#include <string>
#include <cstring>
#include <algorithm>
#include <deque>
#include <iterator>
#include <limits>
//------------------------------------------------------------------------------
// parray<> tools
//
// parray trim[_left|_right](parray v)
// trim whitespaces
//
// bools starts_with(parray v1, parray v2)
// true if v1 starts with v2
// bools ends_with(parray v1, parray v2)
// true if v1 ends with v2
// T* contains(parray v1, parray v2)
// returns pointer to v2's occurence inside of v1 (not necessarily the first one) or nullptr if v2 is not in v1
//
// split/join functions
//
// Notes:
// - [r] stands for 'reverse' -- i.e. rsplit will process array in reverse:
// rsplit("1,2,3", ',') --> ["3","2","1"]
// similarly for rjoin:
// rjoin(["3","2","1"], ',') --> "1,2,3"
// - [_se] stands for 'skip empty':
// split_se("1,,2,3", ',') --> ["1","2","3"]
// join_se(["1","","3"], ',') --> "1,3"
// - split delimiter can be:
// single value
// parray of values
// functor with certain interface (see bitset_delim for example)
// - join delimiter can be:
// single value
// parray of values
// - join result type should have following member functions (fine for vector/basic_string/etc):
// reserve(size_t)
// I end()
// insert(I pos, I it1, I it2)
//
// T* [r]split[_se](parray v, D delim, F f)
// split v into subarrays using delimiter and pass them into functor f until it returns false
// return pointer to an element where we stopped or nullptr (if all data was processed)
// deque<parray> [r]split[_se](parray v, D delim)
// split v using delimiter and return deque of subarrays
// size_t [r]split[_se](parray v, D delim, parray* buf, size_t buf_sz)
// size_t [r]split[_se](parray v, D delim, parray (&buf)[n])
// split v using delimiter and place resulting subarrays into provided buffer; if buffer is not big enough -- last element
// will contain unprocessed remainder of v; return number of buffer elements used
// pre-condition: buffer size > 1
//
// R [r]join[_se](I it, I it_end, D delim)
// join arrays specified by [it, it_end) range into R using delimiter
// void [r]join[_se](I it, I it_end, D delim, F f)
// the same but instead of building value of type R -- call f(v) for every value we would otherwise add to R
//
//
// Example 1:
// remove second substring from the back with only one memory allocation
//
// rcstring data = ...; // something like "AAA_..._BBB_CCCC"
//
// rcstring parts[3];
// size_t count = rsplit(data, '_', parts);
// // parts[0] == "CCCC"
// // parts[1] == "BBB"
// // parts[2] == "AAA_..."
// if (count == 3 && parts[0] == ntba("CCCC") && parts[1] == ntba("BBB"))
// {
// parts[1].len = 0; // make parts[1] empty
// return rjoin_se<string>(parts, parts + count, '_'); // AAA_..._CCCC
// }
// else
// ...; // unexpected data
//
//
// Example 2:
// lets say we are supposed to receive exactly three values separated by \r\n\t,:; or space
//
// bitset_delim<> delim{ ntba("\r\n\t,:; ") }; // constructing bitset_delim is not trivial, if possible do it beforehand
//
// rcstring data = ...; // " A\r:B;,\t C\n"
// rcstring parts[4];
// if (split_se(data, delim, parts) == 3)
// {
// // parts[0] == "A"
// // parts[1] == "B"
// // parts[2] == "C"
// }
// else
// ...; // bad data
//
//
// Example 3:
// split and process string of any length without any memory allocations
//
// rcstring data = ntba("A_B_C_...._X_Y_Z");
// for(;;)
// {
// rcstring parts[3];
// size_t count = split(data, '_', parts);
//
// for(size_t i = 0, t = (count != 3 ? count : 2); i < t; ++i)
// cout << parts[i] << ntba("\n");
//
// if (count != 3) break; // no remainder --> we processed everything
//
// data = parts[2]; // process the rest
// }
//
//------------------------------------------------------------------------------
namespace adv { namespace parray_tools_pvt_ {
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
using std::size_t;
using adv::parray;
using std::deque;
using std::basic_string;
using std::find;
using std::find_if;
using std::find_first_of;
using std::make_reverse_iterator;
using std::numeric_limits;
template<class T> using remove_cv = std::remove_cv_t<T>;
template<bool B, class T = void> using enable_if = std::enable_if_t<B, T>;
template<class T, class U> constexpr bool is_same = std::is_same<T, U>::value;
template<class F, class T> constexpr bool is_convertible = std::is_convertible<F, T>::value;
template<class T> constexpr bool is_scalar = std::is_scalar<T>::value;
// relaxed version of 'is_same<remove_cv<E>, remove_cv<T>> && is_convertible<E*, T*>'
template<class E, class T> constexpr bool is_almost_same = (sizeof(E) == sizeof(T)) && is_convertible<E*, T*>;
//------------------------------------------------------------------------------
template<class T, bool = is_scalar<T>> struct ArgType { using type = remove_cv<T> const&; };
template<class T> struct ArgType<T, true> { using type = remove_cv<T> const; };
template<class T> using argtype = typename ArgType<T>::type;
//------------------------------------------------------------------------------
template<class T, enable_if<is_same<remove_cv<T>, char >>...> inline bool isspace(T v) { return std::isspace (v) != 0; }
template<class T, enable_if<is_same<remove_cv<T>, wchar_t>>...> inline bool isspace(T v) { return std::iswspace(v) != 0; }
//------------------------------------------------------------------------------
template<class T, class Tr, enable_if<is_same<remove_cv<T>, char> || is_same<remove_cv<T>, wchar_t>>...>
inline parray<T, Tr> trim(parray<T, Tr> v)
{
T* p_end = v.p + v.len;
while(v.p != p_end && isspace(*v.p)) ++v.p; // trim left
if (v.p != p_end) // trim right
while( isspace(p_end[-1]) ) --p_end; // v.p points to non-whitespace char (no need for v.p != p_end check)
v.len = p_end - v.p;
return v;
}
//------------------------------------------------------------------------------
template<class T, class Tr, enable_if<is_same<remove_cv<T>, char> || is_same<remove_cv<T>, wchar_t>>...>
inline parray<T, Tr> trim_left(parray<T, Tr> v)
{
T* p_end = v.p + v.len;
while(v.p != p_end && isspace(*v.p)) ++v.p;
v.len = p_end - v.p;
return v;
}
//------------------------------------------------------------------------------
template<class T, class Tr, enable_if<is_same<remove_cv<T>, char> || is_same<remove_cv<T>, wchar_t>>...>
inline parray<T, Tr> trim_right(parray<T, Tr> v)
{
T* p_end = v.p + v.len;
while(p_end != v.p && isspace(p_end[-1])) --p_end;
v.len = p_end - v.p;
return v;
}
//------------------------------------------------------------------------------
// Notes:
// - in comparison below array lengths are guaranteed to be equal, maybe we should allow different
// traits? But if we do -- which one to use?
//
template<class T, class E, class Tr>
inline bool starts_with(parray<T, Tr> v1, parray<E, Tr> v2)
{
return v1.len >= v2.len && parray<T, Tr>(v2.len, v1.p) == v2;
}
//------------------------------------------------------------------------------
template<class T, class E, class Tr>
inline bool ends_with(parray<T, Tr> v1, parray<E, Tr> v2)
{
return v1.len >= v2.len && parray<T, Tr>(v2.len, v1.p + v1.len - v2.len) == v2;
}
//------------------------------------------------------------------------------
// return nullptr if v1 does not contain v2
// otherwise -- T* that points to some occurence of v2 within v1 (not necessarily first one)
template<class T, class E, class Tr, enable_if<is_almost_same<T, E> || is_almost_same<E, T>>...>
inline T* contains(parray<T, Tr> v1, parray<E, Tr> v2)
{
if (v1.len < v2.len) return nullptr;
if (v2.len == 0) return v1.p; // any array contains an empty one
// check if v2 is literally inside of v1
if (v1.p <= v2.p && (v2.p + v2.len) <= (v1.p + v1.len)) // assuming memory model is linear :-)
return v1.p + (v2.p - v1.p);
T* p = std::search(v1.p, v1.p + v1.len, v2.p, v2.p + v2.len); // ok, do it hard way
return (p != v1.p + v1.len) ? p : nullptr;
}
//------------------------------------------------------------------------------
// little helper (to tell apart between D delimiter and single-value T delimiter)
//
template<class T> struct IsDelimiter
{
typedef char Yes[1];
typedef char No [2];
template <int> struct Check;
template <class C> static Yes& Test(Check<C::is_delimiter>*);
template <class> static No & Test(...);
enum { value = (sizeof(Test<T>(nullptr)) == sizeof(Yes)) };
};
template<class T> constexpr bool is_delimiter = IsDelimiter<T>::value;
//------------------------------------------------------------------------------
// Common delimiter classes
//------------------------------------------------------------------------------
template<class T>
struct single_delim
{
enum { is_delimiter }; // mark this type for 'delim is: D' case
argtype<T> delim; // single value
template<class I> inline I find_first(I p, I p_end) const { return find(p, p_end, delim); }
template<class I> inline I skip_all (I p, I p_end) const { return find_if(p, p_end, [this](auto const& v) { return v != delim; }); }
// pre-condition: p was produced by 'find_first()'
template<class I> inline I skip_one (I p) const { return ++p; }
};
template<class T>
struct multi_delim
{
enum { is_delimiter }; // mark this type for 'delim is: D' case
parray<T> delim; // multiple values (any of them)
template<class I> inline I find_first(I p, I p_end) const { return find_first_of(p, p_end, delim.p, delim.p + delim.len); }
template<class I> inline I skip_all (I p, I p_end) const { return find_if(p, p_end, [this, d_end = delim.p + delim.len](auto const& v) { return find(delim.p, d_end, v) == d_end; }); }
// pre-condition: p was produced by 'find_first()' and != p_end
template<class I> inline I skip_one (I p) const { return ++p; }
};
// bitmap lookup delimiter, ignores values outside of [minV, maxV] range
template<class IntT = unsigned char, IntT minV = numeric_limits<IntT>::min(), IntT maxV = numeric_limits<IntT>::max()>
class bitset_delim
{
static_assert(maxV - minV > 0, ""); // max idx value must be positive IntT
enum { char_bits = numeric_limits<unsigned char>::digits, // aka CHAR_BIT
chunk_bits = sizeof(unsigned long)*char_bits,
chunk_count = ((maxV - minV + 1) + chunk_bits - 1)/chunk_bits,
};
unsigned long data[chunk_count];
unsigned idx_(unsigned i) const { return i / chunk_bits; }
unsigned long mask_(unsigned i) const { return 1ul << (i % chunk_bits); }
void set_(unsigned i) { data[idx_(i)] |= mask_(i); }
void clr_(unsigned i) { data[idx_(i)] &= ~mask_(i); }
bool get_(unsigned i) const { return ( data[idx_(i)] & mask_(i) ) ? true : false; }
public:
bitset_delim() { clear_all(); }
template<class T, class Tr>
bitset_delim(parray<T, Tr> v) : bitset_delim()
{
for(size_t i = 0; i < v.len; ++i)
set_bit(v[i]);
}
void clear_all() { memset(data, 0, sizeof(data)); }
void set_all () { memset(data, ~0, sizeof(data)); }
template<class T>
void set_bit(T const& v)
{
IntT tmp = v;
if (minV <= tmp && tmp <= maxV) set_(tmp - minV);
}
template<class T>
void clear_bit(T const& v)
{
IntT tmp = v;
if (minV <= tmp && tmp <= maxV) clr_(tmp - minV);
}
template<class T>
bool is_set(T const& v) const
{
IntT tmp = v;
return (minV <= tmp && tmp <= maxV) ? get_(tmp - minV) : false;
}
// delimiter implementation
enum { is_delimiter }; // mark this type for 'delim is: D' case
template<class I> inline I find_first(I p, I p_end) const { return find_if(p, p_end, [this](auto const& v) { return this->is_set(v); }); }
template<class I> inline I skip_all (I p, I p_end) const { return find_if(p, p_end, [this](auto const& v) { return !this->is_set(v); }); }
// pre-condition: p was produced by 'find_first()' and != p_end
template<class I> inline I skip_one (I p) const { return ++p; }
};
//------------------------------------------------------------------------------
// split[_se]_() -- (internal) generic functions to split range
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// split range using delimiter and call f() for each subrange until f returns true
// returns pointer to element where it stopped or I() if nothing was left
template<class I, class D, class F>
inline I split_(I it, I it_end, D const& delim, F f)
{
for(;;)
{
I p = delim.find_first(it, it_end);
bool stop = f(it, p);
if (p == it_end) return I(); // last chunk was processed
p = delim.skip_one(p); // skip delimiter
if (stop) return p;
it = p;
}
}
//------------------------------------------------------------------------------
// split parray using delimiter and call f() for each non-empty subarray until f returns true
// returns pointer to element where it stopped or I() if nothing was left
template<class I, class D, class F>
inline I split_se_(I it, I it_end, D const& delim, F f)
{
for(bool stop = false; ; )
{
it = delim.skip_all(it, it_end); // skip leading delimiters
if (it == it_end) return I();
if (stop) return it;
I p = delim.find_first(it + 1, it_end); // we know *it is not delim
stop = f(it, p);
it = p;
}
}
//------------------------------------------------------------------------------
// split() functions family
//
// Possible aspects:
// result ->: F, deque, (parray<T>*, sz), parray<T>[n]
// delim is: D, T, parray<T>
// form: [r]split[_se]
//
//------------------------------------------------------------------------------
// delim is: D
// form: split
template<class T, class Tr, class D, class F, enable_if<is_delimiter<D>>...>
inline T* split(parray<T, Tr> v, D const& delim, F f)
{
return split_(v.p, v.p + v.len, delim, [&f](auto it, auto it_end) { return f(parray<T, Tr>(it_end - it, it)); });
}
template<class T, class Tr, class D, enable_if<is_delimiter<D>>...>
deque<parray<T, Tr>> split(parray<T, Tr> v, D const& delim)
{
deque<parray<T, Tr>> res;
split(v, delim, [&res](auto v){ res.push_back(v); return false; });
return res;
}
// pre-condition: buf_sz > 1
template<class T, class Tr, class D, enable_if<is_delimiter<D>>...>
size_t split(parray<T, Tr> v, D const& delim, parray<T, Tr>* buf, size_t buf_sz)
{
size_t i = 0, count = buf_sz - 1;
T* p = split(v, delim, [buf, count, &i](auto v) { buf[i++] = v; return i == count; });
if (p)
buf[i++] = parray<T, Tr>(v.len - (p - v.p), p); // remainder
return i;
}
template<class T, class Tr, class D, size_t n, enable_if<is_delimiter<D>>...>
inline size_t split(parray<T, Tr> v, D const& delim, parray<T, Tr> (&buf)[n])
{
static_assert(n > 1, "buf size should be > 1");
return split(v, delim, &buf[0], n);
}
//------------------------------------------------------------------------------
// delim is: D
// form: split_se
template<class T, class Tr, class D, class F, enable_if<is_delimiter<D>>...>
inline T* split_se(parray<T, Tr> v, D const& delim, F f)
{
return split_se_(v.p, v.p + v.len, delim, [&f](auto it, auto it_end) { return f(parray<T, Tr>(it_end - it, it)); });
}
template<class T, class Tr, class D, enable_if<is_delimiter<D>>...>
deque<parray<T, Tr>> split_se(parray<T, Tr> v, D const& delim)
{
deque<parray<T, Tr>> res;
split_se(v, delim, [&res](auto v){ res.push_back(v); return false; });
return res;
}
// pre-condition: buf_sz > 1
template<class T, class Tr, class D, enable_if<is_delimiter<D>>...>
size_t split_se(parray<T, Tr> v, D const& delim, parray<T, Tr>* buf, size_t buf_sz)
{
size_t i = 0, count = buf_sz - 1;
T* p = split_se(v, delim, [buf, count, &i](auto v) { buf[i++] = v; return i == count; });
if (p)
buf[i++] = parray<T, Tr>(v.len - (p - v.p), p); // remainder
return i;
}
template<class T, class Tr, class D, size_t n, enable_if<is_delimiter<D>>...>
inline size_t split_se(parray<T, Tr> v, D const& delim, parray<T, Tr> (&buf)[n])
{
static_assert(n > 1, "buf size should be > 1");
return split_se(v, delim, &buf[0], n);
}
//------------------------------------------------------------------------------
// delim is: D
// form: rsplit
template<class T, class Tr, class D, class F, enable_if<is_delimiter<D>>...>
T* rsplit(parray<T, Tr> v, D const& delim, F f)
{
return split_(make_reverse_iterator(v.p + v.len), make_reverse_iterator(v.p), delim, [&f](auto it, auto it_end) { return f(parray<T, Tr>(it_end - it, it_end.base())); }).base();
}
template<class T, class Tr, class D, enable_if<is_delimiter<D>>...>
deque<parray<T, Tr>> rsplit(parray<T, Tr> v, D const& delim)
{
deque<parray<T, Tr>> res;
rsplit(v, delim, [&res](auto v){ res.push_back(v); return false; });
return res;
}
// pre-condition: buf_sz > 1
template<class T, class Tr, class D, enable_if<is_delimiter<D>>...>
size_t rsplit(parray<T, Tr> v, D const& delim, parray<T, Tr>* buf, size_t buf_sz)
{
size_t i = 0, count = buf_sz - 1;
T* p = rsplit(v, delim, [buf, count, &i](auto v) { buf[i++] = v; return i == count; });
if (p)
buf[i++] = parray<T, Tr>(p - v.p, v.p); // remainder
return i;
}
template<class T, class Tr, class D, size_t n, enable_if<is_delimiter<D>>...>
inline size_t rsplit(parray<T, Tr> v, D const& delim, parray<T, Tr> (&buf)[n])
{
static_assert(n > 1, "buf size should be > 1");
return rsplit(v, delim, &buf[0], n);
}
//------------------------------------------------------------------------------
// delim is: D
// form: rsplit_se
template<class T, class Tr, class D, class F, enable_if<is_delimiter<D>>...>
T* rsplit_se(parray<T, Tr> v, D const& delim, F f)
{
return split_se_(make_reverse_iterator(v.p + v.len), make_reverse_iterator(v.p), delim, [&f](auto it, auto it_end) { return f(parray<T, Tr>(it_end - it, it_end.base())); }).base();
}
template<class T, class Tr, class D, enable_if<is_delimiter<D>>...>
deque<parray<T, Tr>> rsplit_se(parray<T, Tr> v, D const& delim)
{
deque<parray<T, Tr>> res;
rsplit_se(v, delim, [&res](auto v){ res.push_back(v); return false; });
return res;
}
// pre-condition: buf_sz > 1
template<class T, class Tr, class D, enable_if<is_delimiter<D>>...>
size_t rsplit_se(parray<T, Tr> v, D const& delim, parray<T, Tr>* buf, size_t buf_sz)
{
size_t i = 0, count = buf_sz - 1;
T* p = rsplit_se(v, delim, [buf, count, &i](auto v) { buf[i++] = v; return i == count; });
if (p)
buf[i++] = parray<T, Tr>(p - v.p, v.p); // remainder
return i;
}
template<class T, class Tr, class D, size_t n, enable_if<is_delimiter<D>>...>
inline size_t rsplit_se(parray<T, Tr> v, D const& delim, parray<T, Tr> (&buf)[n])
{
static_assert(n > 1, "buf size should be > 1");
return rsplit_se(v, delim, &buf[0], n);
}
//------------------------------------------------------------------------------
// delim is: T
// form: split
template<class T, class Tr, class F, enable_if<!is_delimiter<T>>...>
T* split(parray<T, Tr> v, argtype<T> delim, F f) { return split(v, single_delim<T>{delim}, f); }
template<class T, class Tr, enable_if<!is_delimiter<T>>...>
deque<parray<T, Tr>> split(parray<T, Tr> v, argtype<T> delim) { return split(v, single_delim<T>{delim}); }
template<class T, class Tr, enable_if<!is_delimiter<T>>...>
size_t split(parray<T, Tr> v, argtype<T> delim, parray<T, Tr>* buf, size_t buf_sz) { return split(v, single_delim<T>{delim}, buf, buf_sz); }
template<class T, class Tr, size_t n, enable_if<!is_delimiter<T>>...>
inline size_t split(parray<T, Tr> v, argtype<T> delim, parray<T, Tr> (&buf)[n]) { return split(v, single_delim<T>{delim}, buf); }
//------------------------------------------------------------------------------
// delim is: parray<T>
// form: split
template<class T, class Tr, class E, class Tr2, class F>
T* split(parray<T, Tr> v, parray<E, Tr2> delim, F f) { return split(v, multi_delim<E>{ parray<E>(delim) }, f); }
template<class T, class Tr, class E, class Tr2>
deque<parray<T, Tr>> split(parray<T, Tr> v, parray<E, Tr2> delim) { return split(v, multi_delim<E>{ parray<E>(delim) }); }
template<class T, class Tr, class E, class Tr2>
size_t split(parray<T, Tr> v, parray<E, Tr2> delim, parray<T, Tr>* buf, size_t buf_sz) { return split(v, multi_delim<E>{ parray<E>(delim) }, buf, buf_sz); }
template<class T, class Tr, class E, class Tr2, size_t n>
inline size_t split(parray<T, Tr> v, parray<E, Tr2> delim, parray<T, Tr> (&buf)[n]) { return split(v, multi_delim<E>{ parray<E>(delim) }, buf); }
//------------------------------------------------------------------------------
// delim is: T
// form: split_se
template<class T, class Tr, class F, enable_if<!is_delimiter<T>>...>
T* split_se(parray<T, Tr> v, argtype<T> delim, F f) { return split_se(v, single_delim<T>{delim}, f); }
template<class T, class Tr, enable_if<!is_delimiter<T>>...>
deque<parray<T, Tr>> split_se(parray<T, Tr> v, argtype<T> delim) { return split_se(v, single_delim<T>{delim}); }
template<class T, class Tr, enable_if<!is_delimiter<T>>...>
size_t split_se(parray<T, Tr> v, argtype<T> delim, parray<T, Tr>* buf, size_t buf_sz) { return split_se(v, single_delim<T>{delim}, buf, buf_sz); }
template<class T, class Tr, size_t n, enable_if<!is_delimiter<T>>...>
inline size_t split_se(parray<T, Tr> v, argtype<T> delim, parray<T, Tr> (&buf)[n]) { return split_se(v, single_delim<T>{delim}, buf); }
//------------------------------------------------------------------------------
// delim is: parray<T>
// form: split_se
template<class T, class Tr, class E, class Tr2, class F>
T* split_se(parray<T, Tr> v, parray<E, Tr2> delim, F f) { return split_se(v, multi_delim<E>{ parray<E>(delim) }, f); }
template<class T, class Tr, class E, class Tr2>
deque<parray<T, Tr>> split_se(parray<T, Tr> v, parray<E, Tr2> delim) { return split_se(v, multi_delim<E>{ parray<E>(delim) }); }
template<class T, class Tr, class E, class Tr2>
size_t split_se(parray<T, Tr> v, parray<E, Tr2> delim, parray<T, Tr>* buf, size_t buf_sz) { return split_se(v, multi_delim<E>{ parray<E>(delim) }, buf, buf_sz); }
template<class T, class Tr, class E, class Tr2, size_t n>
inline size_t split_se(parray<T, Tr> v, parray<E, Tr2> delim, parray<T, Tr> (&buf)[n]) { return split_se(v, multi_delim<E>{ parray<E>(delim) }, buf); }
//------------------------------------------------------------------------------
// delim is: T
// form: rsplit
template<class T, class Tr, class F, enable_if<!is_delimiter<T>>...>
T* rsplit(parray<T, Tr> v, argtype<T> delim, F f) { return rsplit(v, single_delim<T>{delim}, f); }
template<class T, class Tr, enable_if<!is_delimiter<T>>...>
deque<parray<T, Tr>> rsplit(parray<T, Tr> v, argtype<T> delim) { return rsplit(v, single_delim<T>{delim}); }
template<class T, class Tr, enable_if<!is_delimiter<T>>...>
size_t rsplit(parray<T, Tr> v, argtype<T> delim, parray<T, Tr>* buf, size_t buf_sz) { return rsplit(v, single_delim<T>{delim}, buf, buf_sz); }
template<class T, class Tr, size_t n, enable_if<!is_delimiter<T>>...>
inline size_t rsplit(parray<T, Tr> v, argtype<T> delim, parray<T, Tr> (&buf)[n]) { return rsplit(v, single_delim<T>{delim}, buf); }
//------------------------------------------------------------------------------
// delim is: parray<T>
// form: rsplit
template<class T, class Tr, class E, class Tr2, class F>
T* rsplit(parray<T, Tr> v, parray<E, Tr2> delim, F f) { return rsplit(v, multi_delim<E>{ parray<E>(delim) }, f); }
template<class T, class Tr, class E, class Tr2>
deque<parray<T, Tr>> rsplit(parray<T, Tr> v, parray<E, Tr2> delim) { return rsplit(v, multi_delim<E>{ parray<E>(delim) }); }
template<class T, class Tr, class E, class Tr2>
size_t rsplit(parray<T, Tr> v, parray<E, Tr2> delim, parray<T, Tr>* buf, size_t buf_sz) { return rsplit(v, multi_delim<E>{ parray<E>(delim) }, buf, buf_sz); }
template<class T, class Tr, class E, class Tr2, size_t n>
inline size_t rsplit(parray<T, Tr> v, parray<E, Tr2> delim, parray<T, Tr> (&buf)[n]) { return rsplit(v, multi_delim<E>{ parray<E>(delim) }, buf); }
//------------------------------------------------------------------------------
// delim is: T
// form: rsplit_se
template<class T, class Tr, class F, enable_if<!is_delimiter<T>>...>
T* rsplit_se(parray<T, Tr> v, argtype<T> delim, F f) { return rsplit_se(v, single_delim<T>{delim}, f); }
template<class T, class Tr, enable_if<!is_delimiter<T>>...>
deque<parray<T, Tr>> rsplit_se(parray<T, Tr> v, argtype<T> delim) { return rsplit_se(v, single_delim<T>{delim}); }
template<class T, class Tr, enable_if<!is_delimiter<T>>...>
size_t rsplit_se(parray<T, Tr> v, argtype<T> delim, parray<T, Tr>* buf, size_t buf_sz) { return rsplit_se(v, single_delim<T>{delim}, buf, buf_sz); }
template<class T, class Tr, size_t n, enable_if<!is_delimiter<T>>...>
inline size_t rsplit_se(parray<T, Tr> v, argtype<T> delim, parray<T, Tr> (&buf)[n]) { return rsplit_se(v, single_delim<T>{delim}, buf); }
//------------------------------------------------------------------------------
// delim is: parray<T>
// form: rsplit_se
template<class T, class Tr, class E, class Tr2, class F>
T* rsplit_se(parray<T, Tr> v, parray<E, Tr2> delim, F f) { return rsplit_se(v, multi_delim<E>{ parray<E>(delim) }, f); }
template<class T, class Tr, class E, class Tr2>
deque<parray<T, Tr>> rsplit_se(parray<T, Tr> v, parray<E, Tr2> delim) { return rsplit_se(v, multi_delim<E>{ parray<E>(delim) }); }
template<class T, class Tr, class E, class Tr2>
size_t rsplit_se(parray<T, Tr> v, parray<E, Tr2> delim, parray<T, Tr>* buf, size_t buf_sz) { return rsplit_se(v, multi_delim<E>{ parray<E>(delim) }, buf, buf_sz); }
template<class T, class Tr, class E, class Tr2, size_t n>
inline size_t rsplit_se(parray<T, Tr> v, parray<E, Tr2> delim, parray<T, Tr> (&buf)[n]) { return rsplit_se(v, multi_delim<E>{ parray<E>(delim) }, buf); }
//------------------------------------------------------------------------------
// join[_se]_() -- (internal) generic join functions
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
template<class I, class T, class Tr, class F>
inline void join_(I it, I it_end, parray<T, Tr> delim, F f)
{
if (it != it_end)
{
f(*it);
for(++it; it != it_end; ++it)
{
f(delim);
f(*it);
}
}
}
template<class I>
inline size_t total_len_(I it, I it_end, size_t delim)
{
size_t len = 0;
if (it != it_end)
{
len = it->len;
for(++it; it != it_end; ++it) len += delim + it->len;
}
return len;
}
template<class R, class I, class T, class Tr>
inline R join_(I it, I it_end, parray<T, Tr> delim)
{
R r;
r.reserve(total_len_(it, it_end, delim.len));
join_(it, it_end, delim, [&r](auto v){ r.insert(end(r), v.p, v.p + v.len); } );
return r;
}
//------------------------------------------------------------------------------
template<class I, class T, class Tr, class F>
inline void join_se_(I it, I it_end, parray<T, Tr> delim, F f)
{
for(; it != it_end; ++it)
{
if (!it->empty()) // first non-empty value
{
f(*it);
for(++it; it != it_end; ++it)
{
if(!it->empty())
{
f(delim);
f(*it);
}
}
break; // no need for one more 'it != it_end' check
}
}
}
template<class I>
inline size_t total_len_se_(I it, I it_end, size_t delim)
{
size_t len = 0;
for(; it != it_end; ++it)
{
if (!it->empty()) // first non-empty value
{
len = it->len;
for(++it; it != it_end; ++it)
{
if(!it->empty()) len += delim + it->len;
}
break; // no need for one more 'it != it_end' check
}
}
return len;
}
template<class R, class I, class T, class Tr>
inline R join_se_(I it, I it_end, parray<T, Tr> delim)
{
R r;
r.reserve(total_len_se_(it, it_end, delim.len));
join_se_(it, it_end, delim, [&r](auto v){ r.insert(end(r), v.p, v.p + v.len); } );
return r;
}
//------------------------------------------------------------------------------
// join() functions family
//
// Possible aspects:
// input data: deque, (parray<T>*, sz)
// delim is: T, parray<T>
// form: [r]join[_se]
//
// Notes:
// - return type should support 'insert(end, it1, it2)' and 'reserve(size_t)'
//
//------------------------------------------------------------------------------
// input data: range
// delim is: T, parray<T>
// form: [r]join[_se]
template<class R, class I, class T>
R join(I it, I it_end, T const& delim) { return join_<R>(it, it_end, parray<T const>(1, &delim)); }
template<class R, class I, class T>
R join_se(I it, I it_end, T const& delim) { return join_se_<R>(it, it_end, parray<T const>(1, &delim)); }
template<class R, class I, class T>
R rjoin(I it, I it_end, T const& delim) { return join_<R>(make_reverse_iterator(it_end), make_reverse_iterator(it), parray<T const>(1, &delim)); }
template<class R, class I, class T>
R rjoin_se(I it, I it_end, T const& delim) { return join_se_<R>(make_reverse_iterator(it_end), make_reverse_iterator(it), parray<T const>(1, &delim)); }
template<class R, class I, class T, class Tr>
R join(I it, I it_end, parray<T, Tr> delim) { return join_<R>(it, it_end, delim); }
template<class R, class I, class T, class Tr>
R join_se(I it, I it_end, parray<T, Tr> delim) { return join_se_<R>(it, it_end, delim); }
template<class R, class I, class T, class Tr>
R rjoin(I it, I it_end, parray<T, Tr> delim) { return join_<R>(make_reverse_iterator(it_end), make_reverse_iterator(it), delim); }
template<class R, class I, class T, class Tr>
R rjoin_se(I it, I it_end, parray<T, Tr> delim) { return join_se_<R>(make_reverse_iterator(it_end), make_reverse_iterator(it), delim); }
//------------------------------------------------------------------------------
// expose generic form too -- it is too useful
//
template<class I, class T, class F>
void join(I it, I it_end, T const& delim, F f) { join_(it, it_end, parray<T const>(1, &delim), f); }
template<class I, class T, class F>
void join_se(I it, I it_end, T const& delim, F f) { join_se_(it, it_end, parray<T const>(1, &delim), f); }
template<class I, class T, class F>
void rjoin(I it, I it_end, T const& delim, F f) { join_(make_reverse_iterator(it_end), make_reverse_iterator(it), parray<T const>(1, &delim), f); }
template<class I, class T, class F>
void rjoin_se(I it, I it_end, T const& delim, F f) { join_se_(make_reverse_iterator(it_end), make_reverse_iterator(it), parray<T const>(1, &delim), f); }
template<class I, class T, class Tr, class F>
void join(I it, I it_end, parray<T, Tr> delim, F f) { join_(it, it_end, delim, f); }
template<class I, class T, class Tr, class F>
void join_se(I it, I it_end, parray<T, Tr> delim, F f) { join_se_(it, it_end, delim, f); }
template<class I, class T, class Tr, class F>
void rjoin(I it, I it_end, parray<T, Tr> delim, F f) { join_(make_reverse_iterator(it_end), make_reverse_iterator(it), delim, f); }
template<class I, class T, class Tr, class F>
void rjoin_se(I it, I it_end, parray<T, Tr> delim, F f) { join_se_(make_reverse_iterator(it_end), make_reverse_iterator(it), delim, f); }
//------------------------------------------------------------------------------
} // namespace parray_tools_pvt_
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
using parray_tools_pvt_::trim;
using parray_tools_pvt_::trim_left;
using parray_tools_pvt_::trim_right;
using parray_tools_pvt_::starts_with;
using parray_tools_pvt_::ends_with;
using parray_tools_pvt_::contains;
using parray_tools_pvt_::split;
using parray_tools_pvt_::split_se;
using parray_tools_pvt_::rsplit;
using parray_tools_pvt_::rsplit_se;
using parray_tools_pvt_::join;
using parray_tools_pvt_::join_se;
using parray_tools_pvt_::rjoin;
using parray_tools_pvt_::rjoin_se;
using parray_tools_pvt_::bitset_delim;
//------------------------------------------------------------------------------
} // namespace adv
//------------------------------------------------------------------------------
#endif //PARRAY_TOOLS_H_2016_09_05_23_21_06_660_H_