-
Notifications
You must be signed in to change notification settings - Fork 471
/
atomic.rs
1609 lines (1497 loc) · 50.5 KB
/
atomic.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use alloc::boxed::Box;
use core::alloc::Layout;
use core::borrow::{Borrow, BorrowMut};
use core::cmp;
use core::fmt;
use core::marker::PhantomData;
use core::mem::{self, MaybeUninit};
use core::ops::{Deref, DerefMut};
use core::ptr;
use core::slice;
use crate::guard::Guard;
#[cfg(not(miri))]
use crate::primitive::sync::atomic::AtomicUsize;
use crate::primitive::sync::atomic::{AtomicPtr, Ordering};
use crossbeam_utils::atomic::AtomicConsume;
/// Given ordering for the success case in a compare-exchange operation, returns the strongest
/// appropriate ordering for the failure case.
#[cfg(miri)]
#[inline]
fn strongest_failure_ordering(order: Ordering) -> Ordering {
use Ordering::*;
match order {
Relaxed | Release => Relaxed,
Acquire | AcqRel => Acquire,
_ => SeqCst,
}
}
/// The error returned on failed compare-and-swap operation.
pub struct CompareExchangeError<'g, T: ?Sized + Pointable, P: Pointer<T>> {
/// The value in the atomic pointer at the time of the failed operation.
pub current: Shared<'g, T>,
/// The new value, which the operation failed to store.
pub new: P,
}
impl<T, P: Pointer<T> + fmt::Debug> fmt::Debug for CompareExchangeError<'_, T, P> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("CompareExchangeError")
.field("current", &self.current)
.field("new", &self.new)
.finish()
}
}
/// Returns a bitmask containing the unused least significant bits of an aligned pointer to `T`.
#[inline]
fn low_bits<T: ?Sized + Pointable>() -> usize {
(1 << T::ALIGN.trailing_zeros()) - 1
}
/// Panics if the pointer is not properly unaligned.
#[inline]
fn ensure_aligned<T: ?Sized + Pointable>(raw: *mut ()) {
assert_eq!(raw as usize & low_bits::<T>(), 0, "unaligned pointer");
}
/// Given a tagged pointer `data`, returns the same pointer, but tagged with `tag`.
///
/// `tag` is truncated to fit into the unused bits of the pointer to `T`.
#[inline]
fn compose_tag<T: ?Sized + Pointable>(ptr: *mut (), tag: usize) -> *mut () {
int_to_ptr_with_provenance(
(ptr as usize & !low_bits::<T>()) | (tag & low_bits::<T>()),
ptr,
)
}
/// Decomposes a tagged pointer `data` into the pointer and the tag.
#[inline]
fn decompose_tag<T: ?Sized + Pointable>(ptr: *mut ()) -> (*mut (), usize) {
(
int_to_ptr_with_provenance(ptr as usize & !low_bits::<T>(), ptr),
ptr as usize & low_bits::<T>(),
)
}
// HACK: https://github.com/rust-lang/miri/issues/1866#issuecomment-985802751
#[inline]
fn int_to_ptr_with_provenance<T>(addr: usize, prov: *mut T) -> *mut T {
let ptr = prov.cast::<u8>();
ptr.wrapping_add(addr.wrapping_sub(ptr as usize)).cast()
}
/// Types that are pointed to by a single word.
///
/// In concurrent programming, it is necessary to represent an object within a word because atomic
/// operations (e.g., reads, writes, read-modify-writes) support only single words. This trait
/// qualifies such types that are pointed to by a single word.
///
/// The trait generalizes `Box<T>` for a sized type `T`. In a box, an object of type `T` is
/// allocated in heap and it is owned by a single-word pointer. This trait is also implemented for
/// `[MaybeUninit<T>]` by storing its size along with its elements and pointing to the pair of array
/// size and elements.
///
/// Pointers to `Pointable` types can be stored in [`Atomic`], [`Owned`], and [`Shared`]. In
/// particular, Crossbeam supports dynamically sized slices as follows.
///
/// ```
/// use std::mem::MaybeUninit;
/// use crossbeam_epoch::Owned;
///
/// let o = Owned::<[MaybeUninit<i32>]>::init(10); // allocating [i32; 10]
/// ```
pub trait Pointable {
/// The alignment of pointer.
const ALIGN: usize;
/// The type for initializers.
type Init;
/// Initializes a with the given initializer.
///
/// # Safety
///
/// The result should be a multiple of `ALIGN`.
unsafe fn init(init: Self::Init) -> *mut ();
/// Dereferences the given pointer.
///
/// # Safety
///
/// - The given `ptr` should have been initialized with [`Pointable::init`].
/// - `ptr` should not have yet been dropped by [`Pointable::drop`].
/// - `ptr` should not be mutably dereferenced by [`Pointable::deref_mut`] concurrently.
unsafe fn deref<'a>(ptr: *mut ()) -> &'a Self;
/// Mutably dereferences the given pointer.
///
/// # Safety
///
/// - The given `ptr` should have been initialized with [`Pointable::init`].
/// - `ptr` should not have yet been dropped by [`Pointable::drop`].
/// - `ptr` should not be dereferenced by [`Pointable::deref`] or [`Pointable::deref_mut`]
/// concurrently.
unsafe fn deref_mut<'a>(ptr: *mut ()) -> &'a mut Self;
/// Drops the object pointed to by the given pointer.
///
/// # Safety
///
/// - The given `ptr` should have been initialized with [`Pointable::init`].
/// - `ptr` should not have yet been dropped by [`Pointable::drop`].
/// - `ptr` should not be dereferenced by [`Pointable::deref`] or [`Pointable::deref_mut`]
/// concurrently.
unsafe fn drop(ptr: *mut ());
}
impl<T> Pointable for T {
const ALIGN: usize = mem::align_of::<T>();
type Init = T;
unsafe fn init(init: Self::Init) -> *mut () {
Box::into_raw(Box::new(init)).cast::<()>()
}
unsafe fn deref<'a>(ptr: *mut ()) -> &'a Self {
unsafe { &*(ptr as *const T) }
}
unsafe fn deref_mut<'a>(ptr: *mut ()) -> &'a mut Self {
unsafe { &mut *ptr.cast::<T>() }
}
unsafe fn drop(ptr: *mut ()) {
drop(unsafe { Box::from_raw(ptr.cast::<T>()) });
}
}
/// Array with size.
///
/// # Memory layout
///
/// An array consisting of size and elements:
///
/// ```text
/// elements
/// |
/// |
/// ------------------------------------
/// | size | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
/// ------------------------------------
/// ```
///
/// Its memory layout is different from that of `Box<[T]>` in that size is in the allocation (not
/// along with pointer as in `Box<[T]>`).
///
/// Elements are not present in the type, but they will be in the allocation.
/// ```
#[repr(C)]
struct Array<T> {
/// The number of elements (not the number of bytes).
len: usize,
elements: [MaybeUninit<T>; 0],
}
impl<T> Array<T> {
fn layout(len: usize) -> Layout {
Layout::new::<Self>()
.extend(Layout::array::<MaybeUninit<T>>(len).unwrap())
.unwrap()
.0
.pad_to_align()
}
}
impl<T> Pointable for [MaybeUninit<T>] {
const ALIGN: usize = mem::align_of::<Array<T>>();
type Init = usize;
unsafe fn init(len: Self::Init) -> *mut () {
let layout = Array::<T>::layout(len);
unsafe {
let ptr = alloc::alloc::alloc(layout).cast::<Array<T>>();
if ptr.is_null() {
alloc::alloc::handle_alloc_error(layout);
}
ptr::addr_of_mut!((*ptr).len).write(len);
ptr.cast::<()>()
}
}
unsafe fn deref<'a>(ptr: *mut ()) -> &'a Self {
unsafe {
let array = &*(ptr as *const Array<T>);
slice::from_raw_parts(array.elements.as_ptr(), array.len)
}
}
unsafe fn deref_mut<'a>(ptr: *mut ()) -> &'a mut Self {
unsafe {
let array = &mut *ptr.cast::<Array<T>>();
slice::from_raw_parts_mut(array.elements.as_mut_ptr(), array.len)
}
}
unsafe fn drop(ptr: *mut ()) {
unsafe {
let len = (*ptr.cast::<Array<T>>()).len;
let layout = Array::<T>::layout(len);
alloc::alloc::dealloc(ptr.cast::<u8>(), layout);
}
}
}
/// An atomic pointer that can be safely shared between threads.
///
/// The pointer must be properly aligned. Since it is aligned, a tag can be stored into the unused
/// least significant bits of the address. For example, the tag for a pointer to a sized type `T`
/// should be less than `(1 << mem::align_of::<T>().trailing_zeros())`.
///
/// Any method that loads the pointer must be passed a reference to a [`Guard`].
///
/// Crossbeam supports dynamically sized types. See [`Pointable`] for details.
pub struct Atomic<T: ?Sized + Pointable> {
data: AtomicPtr<()>,
_marker: PhantomData<*mut T>,
}
unsafe impl<T: ?Sized + Pointable + Send + Sync> Send for Atomic<T> {}
unsafe impl<T: ?Sized + Pointable + Send + Sync> Sync for Atomic<T> {}
impl<T> Atomic<T> {
/// Allocates `value` on the heap and returns a new atomic pointer pointing to it.
///
/// # Examples
///
/// ```
/// use crossbeam_epoch::Atomic;
///
/// let a = Atomic::new(1234);
/// # unsafe { drop(a.into_owned()); } // avoid leak
/// ```
pub fn new(init: T) -> Self {
Self::init(init)
}
}
impl<T: ?Sized + Pointable> Atomic<T> {
/// Allocates `value` on the heap and returns a new atomic pointer pointing to it.
///
/// # Examples
///
/// ```
/// use crossbeam_epoch::Atomic;
///
/// let a = Atomic::<i32>::init(1234);
/// # unsafe { drop(a.into_owned()); } // avoid leak
/// ```
pub fn init(init: T::Init) -> Self {
Self::from(Owned::init(init))
}
/// Returns a new atomic pointer pointing to the tagged pointer `data`.
fn from_ptr(data: *mut ()) -> Self {
Self {
data: AtomicPtr::new(data),
_marker: PhantomData,
}
}
/// Returns a new null atomic pointer.
///
/// # Examples
///
/// ```
/// use crossbeam_epoch::Atomic;
///
/// let a = Atomic::<i32>::null();
/// ```
#[cfg(not(crossbeam_loom))]
pub const fn null() -> Self {
Self {
data: AtomicPtr::new(ptr::null_mut()),
_marker: PhantomData,
}
}
/// Returns a new null atomic pointer.
#[cfg(crossbeam_loom)]
pub fn null() -> Self {
Self {
data: AtomicPtr::new(ptr::null_mut()),
_marker: PhantomData,
}
}
/// Loads a `Shared` from the atomic pointer.
///
/// This method takes an [`Ordering`] argument which describes the memory ordering of this
/// operation.
///
/// # Examples
///
/// ```
/// use crossbeam_epoch::{self as epoch, Atomic};
/// use std::sync::atomic::Ordering::SeqCst;
///
/// let a = Atomic::new(1234);
/// let guard = &epoch::pin();
/// let p = a.load(SeqCst, guard);
/// # unsafe { drop(a.into_owned()); } // avoid leak
/// ```
pub fn load<'g>(&self, order: Ordering, _: &'g Guard) -> Shared<'g, T> {
unsafe { Shared::from_ptr(self.data.load(order)) }
}
/// Loads a `Shared` from the atomic pointer using a "consume" memory ordering.
///
/// This is similar to the "acquire" ordering, except that an ordering is
/// only guaranteed with operations that "depend on" the result of the load.
/// However consume loads are usually much faster than acquire loads on
/// architectures with a weak memory model since they don't require memory
/// fence instructions.
///
/// The exact definition of "depend on" is a bit vague, but it works as you
/// would expect in practice since a lot of software, especially the Linux
/// kernel, rely on this behavior.
///
/// # Examples
///
/// ```
/// use crossbeam_epoch::{self as epoch, Atomic};
///
/// let a = Atomic::new(1234);
/// let guard = &epoch::pin();
/// let p = a.load_consume(guard);
/// # unsafe { drop(a.into_owned()); } // avoid leak
/// ```
pub fn load_consume<'g>(&self, _: &'g Guard) -> Shared<'g, T> {
unsafe { Shared::from_ptr(self.data.load_consume()) }
}
/// Stores a `Shared` or `Owned` pointer into the atomic pointer.
///
/// This method takes an [`Ordering`] argument which describes the memory ordering of this
/// operation.
///
/// # Examples
///
/// ```
/// use crossbeam_epoch::{Atomic, Owned, Shared};
/// use std::sync::atomic::Ordering::SeqCst;
///
/// let a = Atomic::new(1234);
/// # unsafe { drop(a.load(SeqCst, &crossbeam_epoch::pin()).into_owned()); } // avoid leak
/// a.store(Shared::null(), SeqCst);
/// a.store(Owned::new(1234), SeqCst);
/// # unsafe { drop(a.into_owned()); } // avoid leak
/// ```
pub fn store<P: Pointer<T>>(&self, new: P, order: Ordering) {
self.data.store(new.into_ptr(), order);
}
/// Stores a `Shared` or `Owned` pointer into the atomic pointer, returning the previous
/// `Shared`.
///
/// This method takes an [`Ordering`] argument which describes the memory ordering of this
/// operation.
///
/// # Examples
///
/// ```
/// use crossbeam_epoch::{self as epoch, Atomic, Shared};
/// use std::sync::atomic::Ordering::SeqCst;
///
/// let a = Atomic::new(1234);
/// let guard = &epoch::pin();
/// let p = a.swap(Shared::null(), SeqCst, guard);
/// # unsafe { drop(p.into_owned()); } // avoid leak
/// ```
pub fn swap<'g, P: Pointer<T>>(&self, new: P, order: Ordering, _: &'g Guard) -> Shared<'g, T> {
unsafe { Shared::from_ptr(self.data.swap(new.into_ptr(), order)) }
}
/// Stores the pointer `new` (either `Shared` or `Owned`) into the atomic pointer if the current
/// value is the same as `current`. The tag is also taken into account, so two pointers to the
/// same object, but with different tags, will not be considered equal.
///
/// The return value is a result indicating whether the new pointer was written. On success the
/// pointer that was written is returned. On failure the actual current value and `new` are
/// returned.
///
/// This method takes two `Ordering` arguments to describe the memory
/// ordering of this operation. `success` describes the required ordering for the
/// read-modify-write operation that takes place if the comparison with `current` succeeds.
/// `failure` describes the required ordering for the load operation that takes place when
/// the comparison fails. Using `Acquire` as success ordering makes the store part
/// of this operation `Relaxed`, and using `Release` makes the successful load
/// `Relaxed`. The failure ordering can only be `SeqCst`, `Acquire` or `Relaxed`
/// and must be equivalent to or weaker than the success ordering.
///
/// # Examples
///
/// ```
/// use crossbeam_epoch::{self as epoch, Atomic, Owned, Shared};
/// use std::sync::atomic::Ordering::SeqCst;
///
/// let a = Atomic::new(1234);
///
/// let guard = &epoch::pin();
/// let curr = a.load(SeqCst, guard);
/// let res1 = a.compare_exchange(curr, Shared::null(), SeqCst, SeqCst, guard);
/// let res2 = a.compare_exchange(curr, Owned::new(5678), SeqCst, SeqCst, guard);
/// # unsafe { drop(curr.into_owned()); } // avoid leak
/// ```
pub fn compare_exchange<'g, P>(
&self,
current: Shared<'_, T>,
new: P,
success: Ordering,
failure: Ordering,
_: &'g Guard,
) -> Result<Shared<'g, T>, CompareExchangeError<'g, T, P>>
where
P: Pointer<T>,
{
let new = new.into_ptr();
self.data
.compare_exchange(current.into_ptr(), new, success, failure)
.map(|_| unsafe { Shared::from_ptr(new) })
.map_err(|current| unsafe {
CompareExchangeError {
current: Shared::from_ptr(current),
new: P::from_ptr(new),
}
})
}
/// Stores the pointer `new` (either `Shared` or `Owned`) into the atomic pointer if the current
/// value is the same as `current`. The tag is also taken into account, so two pointers to the
/// same object, but with different tags, will not be considered equal.
///
/// Unlike [`compare_exchange`], this method is allowed to spuriously fail even when comparison
/// succeeds, which can result in more efficient code on some platforms. The return value is a
/// result indicating whether the new pointer was written. On success the pointer that was
/// written is returned. On failure the actual current value and `new` are returned.
///
/// This method takes two `Ordering` arguments to describe the memory
/// ordering of this operation. `success` describes the required ordering for the
/// read-modify-write operation that takes place if the comparison with `current` succeeds.
/// `failure` describes the required ordering for the load operation that takes place when
/// the comparison fails. Using `Acquire` as success ordering makes the store part
/// of this operation `Relaxed`, and using `Release` makes the successful load
/// `Relaxed`. The failure ordering can only be `SeqCst`, `Acquire` or `Relaxed`
/// and must be equivalent to or weaker than the success ordering.
///
/// [`compare_exchange`]: Atomic::compare_exchange
///
/// # Examples
///
/// ```
/// use crossbeam_epoch::{self as epoch, Atomic, Owned, Shared};
/// use std::sync::atomic::Ordering::SeqCst;
///
/// let a = Atomic::new(1234);
/// let guard = &epoch::pin();
///
/// let mut new = Owned::new(5678);
/// let mut ptr = a.load(SeqCst, guard);
/// # unsafe { drop(a.load(SeqCst, guard).into_owned()); } // avoid leak
/// loop {
/// match a.compare_exchange_weak(ptr, new, SeqCst, SeqCst, guard) {
/// Ok(p) => {
/// ptr = p;
/// break;
/// }
/// Err(err) => {
/// ptr = err.current;
/// new = err.new;
/// }
/// }
/// }
///
/// let mut curr = a.load(SeqCst, guard);
/// loop {
/// match a.compare_exchange_weak(curr, Shared::null(), SeqCst, SeqCst, guard) {
/// Ok(_) => break,
/// Err(err) => curr = err.current,
/// }
/// }
/// # unsafe { drop(curr.into_owned()); } // avoid leak
/// ```
pub fn compare_exchange_weak<'g, P>(
&self,
current: Shared<'_, T>,
new: P,
success: Ordering,
failure: Ordering,
_: &'g Guard,
) -> Result<Shared<'g, T>, CompareExchangeError<'g, T, P>>
where
P: Pointer<T>,
{
let new = new.into_ptr();
self.data
.compare_exchange_weak(current.into_ptr(), new, success, failure)
.map(|_| unsafe { Shared::from_ptr(new) })
.map_err(|current| unsafe {
CompareExchangeError {
current: Shared::from_ptr(current),
new: P::from_ptr(new),
}
})
}
/// Fetches the pointer, and then applies a function to it that returns a new value.
/// Returns a `Result` of `Ok(previous_value)` if the function returned `Some`, else `Err(_)`.
///
/// Note that the given function may be called multiple times if the value has been changed by
/// other threads in the meantime, as long as the function returns `Some(_)`, but the function
/// will have been applied only once to the stored value.
///
/// `fetch_update` takes two [`Ordering`] arguments to describe the memory
/// ordering of this operation. The first describes the required ordering for
/// when the operation finally succeeds while the second describes the
/// required ordering for loads. These correspond to the success and failure
/// orderings of [`Atomic::compare_exchange`] respectively.
///
/// Using [`Acquire`] as success ordering makes the store part of this
/// operation [`Relaxed`], and using [`Release`] makes the final successful
/// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
/// [`Acquire`] or [`Relaxed`] and must be equivalent to or weaker than the
/// success ordering.
///
/// [`Relaxed`]: Ordering::Relaxed
/// [`Acquire`]: Ordering::Acquire
/// [`Release`]: Ordering::Release
/// [`SeqCst`]: Ordering::SeqCst
///
/// # Examples
///
/// ```
/// use crossbeam_epoch::{self as epoch, Atomic};
/// use std::sync::atomic::Ordering::SeqCst;
///
/// let a = Atomic::new(1234);
/// let guard = &epoch::pin();
///
/// let res1 = a.fetch_update(SeqCst, SeqCst, guard, |x| Some(x.with_tag(1)));
/// assert!(res1.is_ok());
///
/// let res2 = a.fetch_update(SeqCst, SeqCst, guard, |x| None);
/// assert!(res2.is_err());
/// # unsafe { drop(a.into_owned()); } // avoid leak
/// ```
pub fn fetch_update<'g, F>(
&self,
set_order: Ordering,
fail_order: Ordering,
guard: &'g Guard,
mut func: F,
) -> Result<Shared<'g, T>, Shared<'g, T>>
where
F: FnMut(Shared<'g, T>) -> Option<Shared<'g, T>>,
{
let mut prev = self.load(fail_order, guard);
while let Some(next) = func(prev) {
match self.compare_exchange_weak(prev, next, set_order, fail_order, guard) {
Ok(shared) => return Ok(shared),
Err(next_prev) => prev = next_prev.current,
}
}
Err(prev)
}
/// Bitwise "and" with the current tag.
///
/// Performs a bitwise "and" operation on the current tag and the argument `val`, and sets the
/// new tag to the result. Returns the previous pointer.
///
/// This method takes an [`Ordering`] argument which describes the memory ordering of this
/// operation.
///
/// # Examples
///
/// ```
/// use crossbeam_epoch::{self as epoch, Atomic, Shared};
/// use std::sync::atomic::Ordering::SeqCst;
///
/// let a = Atomic::<i32>::from(Shared::null().with_tag(3));
/// let guard = &epoch::pin();
/// assert_eq!(a.fetch_and(2, SeqCst, guard).tag(), 3);
/// assert_eq!(a.load(SeqCst, guard).tag(), 2);
/// ```
pub fn fetch_and<'g>(&self, val: usize, order: Ordering, _: &'g Guard) -> Shared<'g, T> {
// Ideally, we would always use AtomicPtr::fetch_* since it is strict-provenance
// compatible, but it is unstable. So, for now emulate it only on cfg(miri).
// Code using AtomicUsize::fetch_* via casts is still permissive-provenance
// compatible and is sound.
// TODO: Once `#![feature(strict_provenance_atomic_ptr)]` is stabilized,
// use AtomicPtr::fetch_* in all cases from the version in which it is stabilized.
#[cfg(miri)]
unsafe {
let val = val | !low_bits::<T>();
let fetch_order = strongest_failure_ordering(order);
Shared::from_ptr(
self.data
.fetch_update(order, fetch_order, |x| {
Some(int_to_ptr_with_provenance(x as usize & val, x))
})
.unwrap(),
)
}
#[cfg(not(miri))]
unsafe {
Shared::from_ptr(
(*(&self.data as *const AtomicPtr<_> as *const AtomicUsize))
.fetch_and(val | !low_bits::<T>(), order) as *mut (),
)
}
}
/// Bitwise "or" with the current tag.
///
/// Performs a bitwise "or" operation on the current tag and the argument `val`, and sets the
/// new tag to the result. Returns the previous pointer.
///
/// This method takes an [`Ordering`] argument which describes the memory ordering of this
/// operation.
///
/// # Examples
///
/// ```
/// use crossbeam_epoch::{self as epoch, Atomic, Shared};
/// use std::sync::atomic::Ordering::SeqCst;
///
/// let a = Atomic::<i32>::from(Shared::null().with_tag(1));
/// let guard = &epoch::pin();
/// assert_eq!(a.fetch_or(2, SeqCst, guard).tag(), 1);
/// assert_eq!(a.load(SeqCst, guard).tag(), 3);
/// ```
pub fn fetch_or<'g>(&self, val: usize, order: Ordering, _: &'g Guard) -> Shared<'g, T> {
// Ideally, we would always use AtomicPtr::fetch_* since it is strict-provenance
// compatible, but it is unstable. So, for now emulate it only on cfg(miri).
// Code using AtomicUsize::fetch_* via casts is still permissive-provenance
// compatible and is sound.
// TODO: Once `#![feature(strict_provenance_atomic_ptr)]` is stabilized,
// use AtomicPtr::fetch_* in all cases from the version in which it is stabilized.
#[cfg(miri)]
unsafe {
let val = val & low_bits::<T>();
let fetch_order = strongest_failure_ordering(order);
Shared::from_ptr(
self.data
.fetch_update(order, fetch_order, |x| {
Some(int_to_ptr_with_provenance(x as usize | val, x))
})
.unwrap(),
)
}
#[cfg(not(miri))]
unsafe {
Shared::from_ptr(
(*(&self.data as *const AtomicPtr<_> as *const AtomicUsize))
.fetch_or(val & low_bits::<T>(), order) as *mut (),
)
}
}
/// Bitwise "xor" with the current tag.
///
/// Performs a bitwise "xor" operation on the current tag and the argument `val`, and sets the
/// new tag to the result. Returns the previous pointer.
///
/// This method takes an [`Ordering`] argument which describes the memory ordering of this
/// operation.
///
/// # Examples
///
/// ```
/// use crossbeam_epoch::{self as epoch, Atomic, Shared};
/// use std::sync::atomic::Ordering::SeqCst;
///
/// let a = Atomic::<i32>::from(Shared::null().with_tag(1));
/// let guard = &epoch::pin();
/// assert_eq!(a.fetch_xor(3, SeqCst, guard).tag(), 1);
/// assert_eq!(a.load(SeqCst, guard).tag(), 2);
/// ```
pub fn fetch_xor<'g>(&self, val: usize, order: Ordering, _: &'g Guard) -> Shared<'g, T> {
// Ideally, we would always use AtomicPtr::fetch_* since it is strict-provenance
// compatible, but it is unstable. So, for now emulate it only on cfg(miri).
// Code using AtomicUsize::fetch_* via casts is still permissive-provenance
// compatible and is sound.
// TODO: Once `#![feature(strict_provenance_atomic_ptr)]` is stabilized,
// use AtomicPtr::fetch_* in all cases from the version in which it is stabilized.
#[cfg(miri)]
unsafe {
let val = val & low_bits::<T>();
let fetch_order = strongest_failure_ordering(order);
Shared::from_ptr(
self.data
.fetch_update(order, fetch_order, |x| {
Some(int_to_ptr_with_provenance(x as usize ^ val, x))
})
.unwrap(),
)
}
#[cfg(not(miri))]
unsafe {
Shared::from_ptr(
(*(&self.data as *const AtomicPtr<_> as *const AtomicUsize))
.fetch_xor(val & low_bits::<T>(), order) as *mut (),
)
}
}
/// Takes ownership of the pointee.
///
/// This consumes the atomic and converts it into [`Owned`]. As [`Atomic`] doesn't have a
/// destructor and doesn't drop the pointee while [`Owned`] does, this is suitable for
/// destructors of data structures.
///
/// # Panics
///
/// Panics if this pointer is null, but only in debug mode.
///
/// # Safety
///
/// This method may be called only if the pointer is valid and nobody else is holding a
/// reference to the same object.
///
/// # Examples
///
/// ```rust
/// # use std::mem;
/// # use crossbeam_epoch::Atomic;
/// struct DataStructure {
/// ptr: Atomic<usize>,
/// }
///
/// impl Drop for DataStructure {
/// fn drop(&mut self) {
/// // By now the DataStructure lives only in our thread and we are sure we don't hold
/// // any Shared or & to it ourselves.
/// unsafe {
/// drop(mem::replace(&mut self.ptr, Atomic::null()).into_owned());
/// }
/// }
/// }
/// ```
pub unsafe fn into_owned(self) -> Owned<T> {
unsafe { Owned::from_ptr(self.data.into_inner()) }
}
/// Takes ownership of the pointee if it is non-null.
///
/// This consumes the atomic and converts it into [`Owned`]. As [`Atomic`] doesn't have a
/// destructor and doesn't drop the pointee while [`Owned`] does, this is suitable for
/// destructors of data structures.
///
/// # Safety
///
/// This method may be called only if the pointer is valid and nobody else is holding a
/// reference to the same object, or the pointer is null.
///
/// # Examples
///
/// ```rust
/// # use std::mem;
/// # use crossbeam_epoch::Atomic;
/// struct DataStructure {
/// ptr: Atomic<usize>,
/// }
///
/// impl Drop for DataStructure {
/// fn drop(&mut self) {
/// // By now the DataStructure lives only in our thread and we are sure we don't hold
/// // any Shared or & to it ourselves, but it may be null, so we have to be careful.
/// let old = mem::replace(&mut self.ptr, Atomic::null());
/// unsafe {
/// if let Some(x) = old.try_into_owned() {
/// drop(x)
/// }
/// }
/// }
/// }
/// ```
pub unsafe fn try_into_owned(self) -> Option<Owned<T>> {
let data = self.data.into_inner();
if decompose_tag::<T>(data).0.is_null() {
None
} else {
Some(unsafe { Owned::from_ptr(data) })
}
}
}
impl<T: ?Sized + Pointable> fmt::Debug for Atomic<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let data = self.data.load(Ordering::SeqCst);
let (raw, tag) = decompose_tag::<T>(data);
f.debug_struct("Atomic")
.field("raw", &raw)
.field("tag", &tag)
.finish()
}
}
impl<T: ?Sized + Pointable> fmt::Pointer for Atomic<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let data = self.data.load(Ordering::SeqCst);
let (raw, _) = decompose_tag::<T>(data);
fmt::Pointer::fmt(&(unsafe { T::deref(raw) as *const _ }), f)
}
}
impl<T: ?Sized + Pointable> Clone for Atomic<T> {
/// Returns a copy of the atomic value.
///
/// Note that a `Relaxed` load is used here. If you need synchronization, use it with other
/// atomics or fences.
fn clone(&self) -> Self {
let data = self.data.load(Ordering::Relaxed);
Self::from_ptr(data)
}
}
impl<T: ?Sized + Pointable> Default for Atomic<T> {
fn default() -> Self {
Self::null()
}
}
impl<T: ?Sized + Pointable> From<Owned<T>> for Atomic<T> {
/// Returns a new atomic pointer pointing to `owned`.
///
/// # Examples
///
/// ```
/// use crossbeam_epoch::{Atomic, Owned};
///
/// let a = Atomic::<i32>::from(Owned::new(1234));
/// # unsafe { drop(a.into_owned()); } // avoid leak
/// ```
fn from(owned: Owned<T>) -> Self {
let data = owned.data;
mem::forget(owned);
Self::from_ptr(data)
}
}
impl<T> From<Box<T>> for Atomic<T> {
fn from(b: Box<T>) -> Self {
Self::from(Owned::from(b))
}
}
impl<T> From<T> for Atomic<T> {
fn from(t: T) -> Self {
Self::new(t)
}
}
impl<'g, T: ?Sized + Pointable> From<Shared<'g, T>> for Atomic<T> {
/// Returns a new atomic pointer pointing to `ptr`.
///
/// # Examples
///
/// ```
/// use crossbeam_epoch::{Atomic, Shared};
///
/// let a = Atomic::<i32>::from(Shared::<i32>::null());
/// ```
fn from(ptr: Shared<'g, T>) -> Self {
Self::from_ptr(ptr.data)
}
}
impl<T> From<*const T> for Atomic<T> {
/// Returns a new atomic pointer pointing to `raw`.
///
/// # Examples
///
/// ```
/// use std::ptr;
/// use crossbeam_epoch::Atomic;
///
/// let a = Atomic::<i32>::from(ptr::null::<i32>());
/// ```
fn from(raw: *const T) -> Self {
Self::from_ptr(raw as *mut ())
}
}
/// A trait for either `Owned` or `Shared` pointers.
///
/// This trait is sealed and cannot be implemented for types outside of `crossbeam-epoch`.
pub trait Pointer<T: ?Sized + Pointable>: crate::sealed::Sealed {
/// Returns the machine representation of the pointer.
fn into_ptr(self) -> *mut ();
/// Returns a new pointer pointing to the tagged pointer `data`.
///
/// # Safety
///
/// The given `data` should have been created by `Pointer::into_ptr()`, and one `data` should
/// not be converted back by `Pointer::from_ptr()` multiple times.
unsafe fn from_ptr(data: *mut ()) -> Self;
}
/// An owned heap-allocated object.
///
/// This type is very similar to `Box<T>`.
///
/// The pointer must be properly aligned. Since it is aligned, a tag can be stored into the unused
/// least significant bits of the address.
pub struct Owned<T: ?Sized + Pointable> {
data: *mut (),
_marker: PhantomData<Box<T>>,
}
impl<T: ?Sized + Pointable> crate::sealed::Sealed for Owned<T> {}
impl<T: ?Sized + Pointable> Pointer<T> for Owned<T> {
#[inline]
fn into_ptr(self) -> *mut () {
let data = self.data;
mem::forget(self);
data
}
/// Returns a new pointer pointing to the tagged pointer `data`.
///
/// # Panics
///
/// Panics if the pointer is null, but only in debug mode.
#[inline]
unsafe fn from_ptr(data: *mut ()) -> Self {
debug_assert!(!data.is_null(), "converting null into `Owned`");
Self {
data,
_marker: PhantomData,
}
}
}
impl<T> Owned<T> {
/// Returns a new owned pointer pointing to `raw`.
///
/// This function is unsafe because improper use may lead to memory problems. Argument `raw`
/// must be a valid pointer. Also, a double-free may occur if the function is called twice on
/// the same raw pointer.
///
/// # Panics
///
/// Panics if `raw` is not properly aligned.
///
/// # Safety
///
/// The given `raw` should have been derived from `Owned`, and one `raw` should not be converted
/// back by `Owned::from_raw()` multiple times.
///
/// # Examples
///
/// ```