-
Notifications
You must be signed in to change notification settings - Fork 835
/
IRsend.h
815 lines (789 loc) · 32.4 KB
/
IRsend.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
// Copyright 2009 Ken Shirriff
// Copyright 2015 Mark Szabo
// Copyright 2017 David Conran
#ifndef IRSEND_H_
#define IRSEND_H_
#define __STDC_LIMIT_MACROS
#include <stdint.h>
#include "IRremoteESP8266.h"
// Originally from https://github.com/shirriff/Arduino-IRremote/
// Updated by markszabo (https://github.com/crankyoldgit/IRremoteESP8266) for
// sending IR code on ESP8266
#if TEST || UNIT_TEST
#define VIRTUAL virtual
#else
#define VIRTUAL
#endif
// Constants
// Offset (in microseconds) to use in Period time calculations to account for
// code excution time in producing the software PWM signal.
#if defined(ESP32)
// Calculated on a generic ESP-WROOM-32 board with v3.2-18 SDK @ 240MHz
const int8_t kPeriodOffset = -2;
#elif (defined(ESP8266) && F_CPU == 160000000L) // NOLINT(whitespace/parens)
// Calculated on an ESP8266 NodeMCU v2 board using:
// v2.6.0 with v2.5.2 ESP core @ 160MHz
const int8_t kPeriodOffset = -2;
#else // (defined(ESP8266) && F_CPU == 160000000L)
// Calculated on ESP8266 Wemos D1 mini using v2.4.1 with v2.4.0 ESP core @ 40MHz
const int8_t kPeriodOffset = -5;
#endif // (defined(ESP8266) && F_CPU == 160000000L)
const uint8_t kDutyDefault = 50; // Percentage
const uint8_t kDutyMax = 100; // Percentage
// delayMicroseconds() is only accurate to 16383us.
// Ref: https://www.arduino.cc/en/Reference/delayMicroseconds
const uint16_t kMaxAccurateUsecDelay = 16383;
// Usecs to wait between messages we don't know the proper gap time.
const uint32_t kDefaultMessageGap = 100000;
/// Enumerators and Structures for the Common A/C API.
namespace stdAc {
/// Common A/C settings for A/C operating modes.
enum class opmode_t {
kOff = -1,
kAuto = 0,
kCool = 1,
kHeat = 2,
kDry = 3,
kFan = 4,
// Add new entries before this one, and update it to point to the last entry
kLastOpmodeEnum = kFan,
};
/// Common A/C settings for Fan Speeds.
enum class fanspeed_t {
kAuto = 0,
kMin = 1,
kLow = 2,
kMedium = 3,
kHigh = 4,
kMax = 5,
// Add new entries before this one, and update it to point to the last entry
kLastFanspeedEnum = kMax,
};
/// Common A/C settings for Vertical Swing.
enum class swingv_t {
kOff = -1,
kAuto = 0,
kHighest = 1,
kHigh = 2,
kMiddle = 3,
kLow = 4,
kLowest = 5,
// Add new entries before this one, and update it to point to the last entry
kLastSwingvEnum = kLowest,
};
/// Common A/C settings for Horizontal Swing.
enum class swingh_t {
kOff = -1,
kAuto = 0, // a.k.a. On.
kLeftMax = 1,
kLeft = 2,
kMiddle = 3,
kRight = 4,
kRightMax = 5,
kWide = 6, // a.k.a. left & right at the same time.
// Add new entries before this one, and update it to point to the last entry
kLastSwinghEnum = kWide,
};
/// Structure to hold a common A/C state.
struct state_t {
decode_type_t protocol = decode_type_t::UNKNOWN;
int16_t model = -1; // `-1` means unused.
bool power = false;
stdAc::opmode_t mode = stdAc::opmode_t::kOff;
float degrees = 25;
bool celsius = true;
stdAc::fanspeed_t fanspeed = stdAc::fanspeed_t::kAuto;
stdAc::swingv_t swingv = stdAc::swingv_t::kOff;
stdAc::swingh_t swingh = stdAc::swingh_t::kOff;
bool quiet = false;
bool turbo = false;
bool econo = false;
bool light = false;
bool filter = false;
bool clean = false;
bool beep = false;
int16_t sleep = -1; // `-1` means off.
int16_t clock = -1; // `-1` means not set.
};
}; // namespace stdAc
/// Fujitsu A/C model numbers
enum fujitsu_ac_remote_model_t {
ARRAH2E = 1, ///< (1) AR-RAH2E, AR-RAC1E, AR-RAE1E, AR-RCE1E (Default)
///< Warning: Use on incorrect models can cause the A/C to lock
///< up, requring the A/C to be physically powered off to fix.
///< e.g. AR-RAH1U may lock up with a Swing command.
ARDB1, ///< (2) AR-DB1, AR-DL10 (AR-DL10 swing doesn't work)
ARREB1E, ///< (3) AR-REB1E, AR-RAH1U (Similar to ARRAH2E but no horiz
///< control)
ARJW2, ///< (4) AR-JW2 (Same as ARDB1 but with horiz control)
ARRY4, ///< (5) AR-RY4 (Same as AR-RAH2E but with clean & filter)
ARREW4E, ///< (6) Similar to ARRAH2E, but with different temp config.
};
/// Gree A/C model numbers
enum gree_ac_remote_model_t {
YAW1F = 1, // (1) Ultimate, EKOKAI, RusClimate (Default)
YBOFB, // (2) Green, YBOFB2, YAPOF3
};
/// HAIER_AC176 A/C model numbers
enum haier_ac176_remote_model_t {
V9014557_A = 1, // (1) V9014557 Remote in "A" setting. (Default)
V9014557_B, // (2) V9014557 Remote in "B" setting.
};
/// HITACHI_AC1 A/C model numbers
enum hitachi_ac1_remote_model_t {
R_LT0541_HTA_A = 1, // (1) R-LT0541-HTA Remote in "A" setting. (Default)
R_LT0541_HTA_B, // (2) R-LT0541-HTA Remote in "B" setting.
};
/// MIRAGE A/C model numbers
enum mirage_ac_remote_model_t {
KKG9AC1 = 1, // (1) KKG9A-C1 Remote. (Default)
KKG29AC1, // (2) KKG29A-C1 Remote.
};
/// Panasonic A/C model numbers
enum panasonic_ac_remote_model_t {
kPanasonicUnknown = 0,
kPanasonicLke = 1,
kPanasonicNke = 2,
kPanasonicDke = 3, // PKR too.
kPanasonicJke = 4,
kPanasonicCkp = 5,
kPanasonicRkr = 6,
};
/// Sharp A/C model numbers
enum sharp_ac_remote_model_t {
A907 = 1,
A705 = 2,
A903 = 3, // 820 too
};
/// TCL (& Teknopoint) A/C model numbers
enum tcl_ac_remote_model_t {
TAC09CHSD = 1,
GZ055BE1 = 2, // Also Teknopoint GZ01-BEJ0-000
};
/// Voltas A/C model numbers
enum voltas_ac_remote_model_t {
kVoltasUnknown = 0, // Full Function
kVoltas122LZF = 1, // (1) 122LZF (No SwingH support) (Default)
};
/// Whirlpool A/C model numbers
enum whirlpool_ac_remote_model_t {
DG11J13A = 1, // DG11J1-04 too
DG11J191,
};
/// LG A/C model numbers
enum lg_ac_remote_model_t {
GE6711AR2853M = 1, // (1) LG 28-bit Protocol (default)
AKB75215403, // (2) LG2 28-bit Protocol
AKB74955603, // (3) LG2 28-bit Protocol variant
AKB73757604, // (4) LG2 Variant of AKB74955603
};
// Classes
/// Class for sending all basic IR protocols.
/// @note Originally from https://github.com/shirriff/Arduino-IRremote/
/// Updated by markszabo (https://github.com/crankyoldgit/IRremoteESP8266) for
/// sending IR code on ESP8266
class IRsend {
public:
explicit IRsend(uint16_t IRsendPin, bool inverted = false,
bool use_modulation = true);
void begin();
void enableIROut(uint32_t freq, uint8_t duty = kDutyDefault);
VIRTUAL void _delayMicroseconds(uint32_t usec);
VIRTUAL uint16_t mark(uint16_t usec);
VIRTUAL void space(uint32_t usec);
int8_t calibrate(uint16_t hz = 38000U);
void sendRaw(const uint16_t buf[], const uint16_t len, const uint16_t hz);
void sendData(uint16_t onemark, uint32_t onespace, uint16_t zeromark,
uint32_t zerospace, uint64_t data, uint16_t nbits,
bool MSBfirst = true);
void sendManchesterData(const uint16_t half_period, const uint64_t data,
const uint16_t nbits, const bool MSBfirst = true,
const bool GEThomas = true);
void sendManchester(const uint16_t headermark, const uint32_t headerspace,
const uint16_t half_period, const uint16_t footermark,
const uint32_t gap, const uint64_t data,
const uint16_t nbits, const uint16_t frequency = 38,
const bool MSBfirst = true,
const uint16_t repeat = kNoRepeat,
const uint8_t dutycycle = kDutyDefault,
const bool GEThomas = true);
void sendGeneric(const uint16_t headermark, const uint32_t headerspace,
const uint16_t onemark, const uint32_t onespace,
const uint16_t zeromark, const uint32_t zerospace,
const uint16_t footermark, const uint32_t gap,
const uint64_t data, const uint16_t nbits,
const uint16_t frequency, const bool MSBfirst,
const uint16_t repeat, const uint8_t dutycycle);
void sendGeneric(const uint16_t headermark, const uint32_t headerspace,
const uint16_t onemark, const uint32_t onespace,
const uint16_t zeromark, const uint32_t zerospace,
const uint16_t footermark, const uint32_t gap,
const uint32_t mesgtime, const uint64_t data,
const uint16_t nbits, const uint16_t frequency,
const bool MSBfirst, const uint16_t repeat,
const uint8_t dutycycle);
void sendGeneric(const uint16_t headermark, const uint32_t headerspace,
const uint16_t onemark, const uint32_t onespace,
const uint16_t zeromark, const uint32_t zerospace,
const uint16_t footermark, const uint32_t gap,
const uint8_t *dataptr, const uint16_t nbytes,
const uint16_t frequency, const bool MSBfirst,
const uint16_t repeat, const uint8_t dutycycle);
static uint16_t minRepeats(const decode_type_t protocol);
static uint16_t defaultBits(const decode_type_t protocol);
bool send(const decode_type_t type, const uint64_t data,
const uint16_t nbits, const uint16_t repeat = kNoRepeat);
bool send(const decode_type_t type, const uint8_t *state,
const uint16_t nbytes);
#if (SEND_NEC || SEND_SHERWOOD || SEND_AIWA_RC_T501 || SEND_SANYO || \
SEND_MIDEA24)
void sendNEC(uint64_t data, uint16_t nbits = kNECBits,
uint16_t repeat = kNoRepeat);
uint32_t encodeNEC(uint16_t address, uint16_t command);
#endif
#if SEND_SONY
// sendSony() should typically be called with repeat=2 as Sony devices
// expect the code to be sent at least 3 times. (code + 2 repeats = 3 codes)
// Legacy use of this procedure was to only send a single code so call it with
// repeat=0 for backward compatibility. As of v2.0 it defaults to sending
// a Sony command that will be accepted be a device.
void sendSony(const uint64_t data, const uint16_t nbits = kSony20Bits,
const uint16_t repeat = kSonyMinRepeat);
void sendSony38(const uint64_t data, const uint16_t nbits = kSony20Bits,
const uint16_t repeat = kSonyMinRepeat + 1);
uint32_t encodeSony(const uint16_t nbits, const uint16_t command,
const uint16_t address, const uint16_t extended = 0);
#endif // SEND_SONY
#if SEND_SHERWOOD
void sendSherwood(uint64_t data, uint16_t nbits = kSherwoodBits,
uint16_t repeat = kSherwoodMinRepeat);
#endif
#if SEND_SAMSUNG
void sendSAMSUNG(const uint64_t data, const uint16_t nbits = kSamsungBits,
const uint16_t repeat = kNoRepeat);
uint32_t encodeSAMSUNG(const uint8_t customer, const uint8_t command);
#endif
#if SEND_SAMSUNG36
void sendSamsung36(const uint64_t data, const uint16_t nbits = kSamsung36Bits,
const uint16_t repeat = kNoRepeat);
#endif
#if SEND_SAMSUNG_AC
void sendSamsungAC(const unsigned char data[],
const uint16_t nbytes = kSamsungAcStateLength,
const uint16_t repeat = kSamsungAcDefaultRepeat);
#endif
#if SEND_LG
void sendLG(uint64_t data, uint16_t nbits = kLgBits,
uint16_t repeat = kNoRepeat);
void sendLG2(uint64_t data, uint16_t nbits = kLgBits,
uint16_t repeat = kNoRepeat);
uint32_t encodeLG(uint16_t address, uint16_t command);
#endif
#if (SEND_SHARP || SEND_DENON)
uint32_t encodeSharp(const uint16_t address, const uint16_t command,
const uint16_t expansion = 1, const uint16_t check = 0,
const bool MSBfirst = false);
void sendSharp(const uint16_t address, const uint16_t command,
const uint16_t nbits = kSharpBits,
const uint16_t repeat = kNoRepeat);
void sendSharpRaw(const uint64_t data, const uint16_t nbits = kSharpBits,
const uint16_t repeat = kNoRepeat);
#endif
#if SEND_SHARP_AC
void sendSharpAc(const unsigned char data[],
const uint16_t nbytes = kSharpAcStateLength,
const uint16_t repeat = kSharpAcDefaultRepeat);
#endif // SEND_SHARP_AC
#if SEND_JVC
void sendJVC(uint64_t data, uint16_t nbits = kJvcBits,
uint16_t repeat = kNoRepeat);
uint16_t encodeJVC(uint8_t address, uint8_t command);
#endif
#if SEND_DENON
void sendDenon(uint64_t data, uint16_t nbits = kDenonBits,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_SANYO
uint64_t encodeSanyoLC7461(uint16_t address, uint8_t command);
void sendSanyoLC7461(const uint64_t data,
const uint16_t nbits = kSanyoLC7461Bits,
const uint16_t repeat = kNoRepeat);
#endif
#if SEND_SANYO_AC
void sendSanyoAc(const uint8_t *data,
const uint16_t nbytes = kSanyoAcStateLength,
const uint16_t repeat = kNoRepeat);
#endif // SEND_SANYO_AC
#if SEND_SANYO_AC88
void sendSanyoAc88(const uint8_t *data,
const uint16_t nbytes = kSanyoAc88StateLength,
const uint16_t repeat = kSanyoAc88MinRepeat);
#endif // SEND_SANYO_AC88
#if SEND_DISH
// sendDISH() should typically be called with repeat=3 as DISH devices
// expect the code to be sent at least 4 times. (code + 3 repeats = 4 codes)
// Legacy use of this procedure was only to send a single code
// so use repeat=0 for backward compatibility.
void sendDISH(uint64_t data, uint16_t nbits = kDishBits,
uint16_t repeat = kDishMinRepeat);
#endif
#if (SEND_PANASONIC || SEND_DENON)
void sendPanasonic64(const uint64_t data,
const uint16_t nbits = kPanasonicBits,
const uint16_t repeat = kNoRepeat);
void sendPanasonic(const uint16_t address, const uint32_t data,
const uint16_t nbits = kPanasonicBits,
const uint16_t repeat = kNoRepeat);
uint64_t encodePanasonic(const uint16_t manufacturer, const uint8_t device,
const uint8_t subdevice, const uint8_t function);
#endif
#if SEND_RC5
void sendRC5(const uint64_t data, uint16_t nbits = kRC5XBits,
const uint16_t repeat = kNoRepeat);
uint16_t encodeRC5(const uint8_t address, const uint8_t command,
const bool key_released = false);
uint16_t encodeRC5X(const uint8_t address, const uint8_t command,
const bool key_released = false);
uint64_t toggleRC5(const uint64_t data);
#endif
#if SEND_RC6
void sendRC6(const uint64_t data, const uint16_t nbits = kRC6Mode0Bits,
const uint16_t repeat = kNoRepeat);
uint64_t encodeRC6(const uint32_t address, const uint8_t command,
const uint16_t mode = kRC6Mode0Bits);
uint64_t toggleRC6(const uint64_t data, const uint16_t nbits = kRC6Mode0Bits);
#endif
#if SEND_RCMM
void sendRCMM(uint64_t data, uint16_t nbits = kRCMMBits,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_COOLIX
void sendCOOLIX(const uint64_t data, const uint16_t nbits = kCoolixBits,
const uint16_t repeat = kCoolixDefaultRepeat);
#endif // SEND_COOLIX
#if SEND_COOLIX48
void sendCoolix48(const uint64_t data, const uint16_t nbits = kCoolix48Bits,
const uint16_t repeat = kCoolixDefaultRepeat);
#endif // SEND_COOLIX48
#if SEND_WHYNTER
void sendWhynter(const uint64_t data, const uint16_t nbits = kWhynterBits,
const uint16_t repeat = kNoRepeat);
#endif
#if SEND_MIRAGE
void sendMirage(const unsigned char data[],
const uint16_t nbytes = kMirageStateLength,
const uint16_t repeat = kMirageMinRepeat);
#endif // SEND_MIRAGE
#if SEND_MITSUBISHI
void sendMitsubishi(uint64_t data, uint16_t nbits = kMitsubishiBits,
uint16_t repeat = kMitsubishiMinRepeat);
#endif
#if SEND_MITSUBISHI136
void sendMitsubishi136(const unsigned char data[],
const uint16_t nbytes = kMitsubishi136StateLength,
const uint16_t repeat = kMitsubishi136MinRepeat);
#endif
#if SEND_MITSUBISHI112
void sendMitsubishi112(const unsigned char data[],
const uint16_t nbytes = kMitsubishi112StateLength,
const uint16_t repeat = kMitsubishi112MinRepeat);
#endif
#if SEND_MITSUBISHI2
void sendMitsubishi2(uint64_t data, uint16_t nbits = kMitsubishiBits,
uint16_t repeat = kMitsubishiMinRepeat);
#endif
#if SEND_MITSUBISHI_AC
void sendMitsubishiAC(const unsigned char data[],
const uint16_t nbytes = kMitsubishiACStateLength,
const uint16_t repeat = kMitsubishiACMinRepeat);
#endif
#if SEND_MITSUBISHIHEAVY
void sendMitsubishiHeavy88(
const unsigned char data[],
const uint16_t nbytes = kMitsubishiHeavy88StateLength,
const uint16_t repeat = kMitsubishiHeavy88MinRepeat);
void sendMitsubishiHeavy152(
const unsigned char data[],
const uint16_t nbytes = kMitsubishiHeavy152StateLength,
const uint16_t repeat = kMitsubishiHeavy152MinRepeat);
#endif
#if SEND_FUJITSU_AC
void sendFujitsuAC(const unsigned char data[], const uint16_t nbytes,
const uint16_t repeat = kFujitsuAcMinRepeat);
#endif
#if SEND_INAX
void sendInax(const uint64_t data, const uint16_t nbits = kInaxBits,
const uint16_t repeat = kInaxMinRepeat);
#endif // SEND_INAX
#if SEND_GLOBALCACHE
void sendGC(uint16_t buf[], uint16_t len);
#endif
#if SEND_KELVINATOR
void sendKelvinator(const unsigned char data[],
const uint16_t nbytes = kKelvinatorStateLength,
const uint16_t repeat = kKelvinatorDefaultRepeat);
#endif
#if SEND_DAIKIN
void sendDaikin(const unsigned char data[],
const uint16_t nbytes = kDaikinStateLength,
const uint16_t repeat = kDaikinDefaultRepeat);
#endif
#if SEND_DAIKIN64
void sendDaikin64(const uint64_t data, const uint16_t nbits = kDaikin64Bits,
const uint16_t repeat = kDaikin64DefaultRepeat);
#endif // SEND_DAIKIN64
#if SEND_DAIKIN128
void sendDaikin128(const unsigned char data[],
const uint16_t nbytes = kDaikin128StateLength,
const uint16_t repeat = kDaikin128DefaultRepeat);
#endif // SEND_DAIKIN128
#if SEND_DAIKIN152
void sendDaikin152(const unsigned char data[],
const uint16_t nbytes = kDaikin152StateLength,
const uint16_t repeat = kDaikin152DefaultRepeat);
#endif // SEND_DAIKIN152
#if SEND_DAIKIN160
void sendDaikin160(const unsigned char data[],
const uint16_t nbytes = kDaikin160StateLength,
const uint16_t repeat = kDaikin160DefaultRepeat);
#endif // SEND_DAIKIN160
#if SEND_DAIKIN176
void sendDaikin176(const unsigned char data[],
const uint16_t nbytes = kDaikin176StateLength,
const uint16_t repeat = kDaikin176DefaultRepeat);
#endif // SEND_DAIKIN176
#if SEND_DAIKIN2
void sendDaikin2(const unsigned char data[],
const uint16_t nbytes = kDaikin2StateLength,
const uint16_t repeat = kDaikin2DefaultRepeat);
#endif
#if SEND_DAIKIN216
void sendDaikin216(const unsigned char data[],
const uint16_t nbytes = kDaikin216StateLength,
const uint16_t repeat = kDaikin216DefaultRepeat);
#endif
#if SEND_AIWA_RC_T501
void sendAiwaRCT501(uint64_t data, uint16_t nbits = kAiwaRcT501Bits,
uint16_t repeat = kAiwaRcT501MinRepeats);
#endif
#if SEND_GREE
void sendGree(const uint64_t data, const uint16_t nbits = kGreeBits,
const uint16_t repeat = kGreeDefaultRepeat);
void sendGree(const uint8_t data[], const uint16_t nbytes = kGreeStateLength,
const uint16_t repeat = kGreeDefaultRepeat);
#endif
#if SEND_GOODWEATHER
void sendGoodweather(const uint64_t data,
const uint16_t nbits = kGoodweatherBits,
const uint16_t repeat = kGoodweatherMinRepeat);
#endif // SEND_GOODWEATHER
#if SEND_PRONTO
void sendPronto(uint16_t data[], uint16_t len, uint16_t repeat = kNoRepeat);
#endif
#if SEND_ARGO
void sendArgo(const unsigned char data[],
const uint16_t nbytes = kArgoStateLength,
const uint16_t repeat = kArgoDefaultRepeat);
#endif
#if SEND_TROTEC
void sendTrotec(const unsigned char data[],
const uint16_t nbytes = kTrotecStateLength,
const uint16_t repeat = kTrotecDefaultRepeat);
#endif // SEND_TROTEC
#if SEND_TROTEC_3550
void sendTrotec3550(const unsigned char data[],
const uint16_t nbytes = kTrotecStateLength,
const uint16_t repeat = kTrotecDefaultRepeat);
#endif // SEND_TROTEC_3550
#if SEND_NIKAI
void sendNikai(uint64_t data, uint16_t nbits = kNikaiBits,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_TOSHIBA_AC
void sendToshibaAC(const uint8_t data[],
const uint16_t nbytes = kToshibaACStateLength,
const uint16_t repeat = kToshibaACMinRepeat);
#endif
#if SEND_MIDEA
void sendMidea(uint64_t data, uint16_t nbits = kMideaBits,
uint16_t repeat = kMideaMinRepeat);
#endif // SEND_MIDEA
#if SEND_MIDEA24
void sendMidea24(const uint64_t data, const uint16_t nbits = kMidea24Bits,
const uint16_t repeat = kMidea24MinRepeat);
#endif // SEND_MIDEA24
#if SEND_MAGIQUEST
void sendMagiQuest(const uint64_t data, const uint16_t nbits = kMagiquestBits,
const uint16_t repeat = kNoRepeat);
uint64_t encodeMagiQuest(const uint32_t wand_id, const uint16_t magnitude);
#endif
#if SEND_LASERTAG
void sendLasertag(uint64_t data, uint16_t nbits = kLasertagBits,
uint16_t repeat = kLasertagMinRepeat);
#endif
#if SEND_CARRIER_AC
void sendCarrierAC(uint64_t data, uint16_t nbits = kCarrierAcBits,
uint16_t repeat = kCarrierAcMinRepeat);
#endif
#if SEND_CARRIER_AC40
void sendCarrierAC40(uint64_t data, uint16_t nbits = kCarrierAc40Bits,
uint16_t repeat = kCarrierAc40MinRepeat);
#endif
#if SEND_CARRIER_AC64
void sendCarrierAC64(uint64_t data, uint16_t nbits = kCarrierAc64Bits,
uint16_t repeat = kCarrierAc64MinRepeat);
#endif
#if (SEND_HAIER_AC || SEND_HAIER_AC_YRW02 || SEND_HAIER_AC176)
void sendHaierAC(const unsigned char data[],
const uint16_t nbytes = kHaierACStateLength,
const uint16_t repeat = kHaierAcDefaultRepeat);
#endif // (SEND_HAIER_AC || SEND_HAIER_AC_YRW02 || SEND_HAIER_AC176)
#if SEND_HAIER_AC_YRW02
void sendHaierACYRW02(const unsigned char data[],
const uint16_t nbytes = kHaierACYRW02StateLength,
const uint16_t repeat = kHaierAcYrw02DefaultRepeat);
#endif // SEND_HAIER_AC_YRW02
#if SEND_HAIER_AC176
void sendHaierAC176(const unsigned char data[],
const uint16_t nbytes = kHaierAC176StateLength,
const uint16_t repeat = kHaierAc176DefaultRepeat);
#endif // SEND_HAIER_AC176
#if SEND_HITACHI_AC
void sendHitachiAC(const unsigned char data[],
const uint16_t nbytes = kHitachiAcStateLength,
const uint16_t repeat = kHitachiAcDefaultRepeat);
#endif
#if SEND_HITACHI_AC1
void sendHitachiAC1(const unsigned char data[],
const uint16_t nbytes = kHitachiAc1StateLength,
const uint16_t repeat = kHitachiAcDefaultRepeat);
#endif
#if SEND_HITACHI_AC2
void sendHitachiAC2(const unsigned char data[],
const uint16_t nbytes = kHitachiAc2StateLength,
const uint16_t repeat = kHitachiAcDefaultRepeat);
#endif
#if SEND_HITACHI_AC3
void sendHitachiAc3(const unsigned char data[],
const uint16_t nbytes, // No default as there as so many
// different sizes
const uint16_t repeat = kHitachiAcDefaultRepeat);
#endif // SEND_HITACHI_AC3
#if SEND_HITACHI_AC264
void sendHitachiAc264(const unsigned char data[],
const uint16_t nbytes = kHitachiAc264StateLength,
const uint16_t repeat = kHitachiAcDefaultRepeat);
#endif // SEND_HITACHI_AC264
#if SEND_HITACHI_AC344
void sendHitachiAc344(const unsigned char data[],
const uint16_t nbytes = kHitachiAc344StateLength,
const uint16_t repeat = kHitachiAcDefaultRepeat);
#endif // SEND_HITACHI_AC344
#if SEND_HITACHI_AC424
void sendHitachiAc424(const unsigned char data[],
const uint16_t nbytes = kHitachiAc424StateLength,
const uint16_t repeat = kHitachiAcDefaultRepeat);
#endif // SEND_HITACHI_AC424
#if SEND_GICABLE
void sendGICable(uint64_t data, uint16_t nbits = kGicableBits,
uint16_t repeat = kGicableMinRepeat);
#endif
#if SEND_WHIRLPOOL_AC
void sendWhirlpoolAC(const unsigned char data[],
const uint16_t nbytes = kWhirlpoolAcStateLength,
const uint16_t repeat = kWhirlpoolAcDefaultRepeat);
#endif
#if SEND_LUTRON
void sendLutron(uint64_t data, uint16_t nbits = kLutronBits,
uint16_t repeat = kNoRepeat);
#endif
#if SEND_ELECTRA_AC
void sendElectraAC(const unsigned char data[],
const uint16_t nbytes = kElectraAcStateLength,
const uint16_t repeat = kNoRepeat);
#endif
#if SEND_PANASONIC_AC
void sendPanasonicAC(const unsigned char data[],
const uint16_t nbytes = kPanasonicAcStateLength,
const uint16_t repeat = kPanasonicAcDefaultRepeat);
#endif // SEND_PANASONIC_AC
#if SEND_PANASONIC_AC32
void sendPanasonicAC32(const uint64_t data,
const uint16_t nbits = kPanasonicAc32Bits,
const uint16_t repeat = kPanasonicAcDefaultRepeat);
#endif // SEND_PANASONIC_AC32
#if SEND_PIONEER
void sendPioneer(const uint64_t data, const uint16_t nbits = kPioneerBits,
const uint16_t repeat = kNoRepeat);
uint64_t encodePioneer(uint16_t address, uint16_t command);
#endif
#if SEND_MWM
void sendMWM(const unsigned char data[], const uint16_t nbytes,
const uint16_t repeat = kNoRepeat);
#endif
#if SEND_VESTEL_AC
void sendVestelAc(const uint64_t data, const uint16_t nbits = kVestelAcBits,
const uint16_t repeat = kNoRepeat);
#endif
#if SEND_TCL112AC
void sendTcl112Ac(const unsigned char data[],
const uint16_t nbytes = kTcl112AcStateLength,
const uint16_t repeat = kTcl112AcDefaultRepeat);
#endif
#if SEND_TECO
void sendTeco(const uint64_t data, const uint16_t nbits = kTecoBits,
const uint16_t repeat = kNoRepeat);
#endif
#if SEND_LEGOPF
void sendLegoPf(const uint64_t data, const uint16_t nbits = kLegoPfBits,
const uint16_t repeat = kLegoPfMinRepeat);
#endif
#if SEND_NEOCLIMA
void sendNeoclima(const unsigned char data[],
const uint16_t nbytes = kNeoclimaStateLength,
const uint16_t repeat = kNeoclimaMinRepeat);
#endif // SEND_NEOCLIMA
#if SEND_AMCOR
void sendAmcor(const unsigned char data[],
const uint16_t nbytes = kAmcorStateLength,
const uint16_t repeat = kAmcorDefaultRepeat);
#endif // SEND_AMCOR
#if SEND_EPSON
void sendEpson(uint64_t data, uint16_t nbits = kEpsonBits,
uint16_t repeat = kEpsonMinRepeat);
#endif
#if SEND_SYMPHONY
void sendSymphony(uint64_t data, uint16_t nbits = kSymphonyBits,
uint16_t repeat = kSymphonyDefaultRepeat);
#endif
#if SEND_AIRWELL
void sendAirwell(uint64_t data, uint16_t nbits = kAirwellBits,
uint16_t repeat = kAirwellMinRepeats);
#endif
#if SEND_DELONGHI_AC
void sendDelonghiAc(uint64_t data, uint16_t nbits = kDelonghiAcBits,
uint16_t repeat = kDelonghiAcDefaultRepeat);
#endif
#if SEND_DOSHISHA
void sendDoshisha(const uint64_t data, uint16_t nbits = kDoshishaBits,
const uint16_t repeat = kNoRepeat);
uint64_t encodeDoshisha(const uint8_t command, const uint8_t channel = 0);
#endif // SEND_DOSHISHA
#if SEND_MULTIBRACKETS
void sendMultibrackets(const uint64_t data,
const uint16_t nbits = kMultibracketsBits,
const uint16_t repeat = kMultibracketsDefaultRepeat);
#endif
#if SEND_TECHNIBEL_AC
void sendTechnibelAc(uint64_t data, uint16_t nbits = kTechnibelAcBits,
uint16_t repeat = kTechnibelAcDefaultRepeat);
#endif
#if SEND_CORONA_AC
void sendCoronaAc(const uint8_t data[],
const uint16_t nbytes = kCoronaAcStateLength,
const uint16_t repeat = kNoRepeat);
#endif // SEND_CORONA_AC
#if SEND_ZEPEAL
void sendZepeal(const uint64_t data,
const uint16_t nbits = kZepealBits,
const uint16_t repeat = kZepealMinRepeat);
#endif // SEND_ZEPEAL
#if SEND_VOLTAS
void sendVoltas(const unsigned char data[],
const uint16_t nbytes = kVoltasStateLength,
const uint16_t repeat = kNoRepeat);
#endif // SEND_VOLTAS
#if SEND_METZ
void sendMetz(const uint64_t data,
const uint16_t nbits = kMetzBits,
const uint16_t repeat = kMetzMinRepeat);
static uint32_t encodeMetz(const uint8_t address, const uint8_t command,
const bool toggle = false);
#endif // SEND_METZ
#if SEND_TRANSCOLD
void sendTranscold(const uint64_t data, const uint16_t nbits = kTranscoldBits,
const uint16_t repeat = kTranscoldDefaultRepeat);
#endif // SEND_TRANSCOLD
#if SEND_ELITESCREENS
void sendElitescreens(const uint64_t data,
const uint16_t nbits = kEliteScreensBits,
const uint16_t repeat = kEliteScreensDefaultRepeat);
#endif // SEND_ELITESCREENS
#if SEND_MILESTAG2
// Since There 2 types of transmissions
// (14bits for Shooting by default, you can set 24 bit for msg delivery)
void sendMilestag2(const uint64_t data,
const uint16_t nbits = kMilesTag2ShotBits,
const uint16_t repeat = kMilesMinRepeat);
#endif // SEND_MILESTAG2
#if SEND_ECOCLIM
void sendEcoclim(const uint64_t data, const uint16_t nbits = kEcoclimBits,
const uint16_t repeat = kNoRepeat);
#endif // SEND_ECOCLIM
#if SEND_XMP
void sendXmp(const uint64_t data, const uint16_t nbits = kXmpBits,
const uint16_t repeat = kNoRepeat);
#endif // SEND_XMP
#if SEND_TRUMA
void sendTruma(const uint64_t data, const uint16_t nbits = kTrumaBits,
const uint16_t repeat = kNoRepeat);
#endif // SEND_TRUMA
#if SEND_TEKNOPOINT
void sendTeknopoint(const unsigned char data[],
const uint16_t nbytes = kTeknopointStateLength,
const uint16_t repeat = kNoRepeat);
#endif // SEND_TEKNOPOINT
#if SEND_KELON
void sendKelon(const uint64_t data, const uint16_t nbits = kKelonBits,
const uint16_t repeat = kNoRepeat);
#endif // SEND_KELON
#if SEND_BOSE
void sendBose(const uint64_t data, const uint16_t nbits = kBoseBits,
const uint16_t repeat = kNoRepeat);
#endif // SEND_BOSE
#if SEND_ARRIS
void sendArris(const uint64_t data, const uint16_t nbits = kArrisBits,
const uint16_t repeat = kNoRepeat);
static uint32_t toggleArrisRelease(const uint32_t data);
static uint32_t encodeArris(const uint32_t command, const bool release);
#endif // SEND_ARRIS
#if SEND_RHOSS
void sendRhoss(const unsigned char data[],
const uint16_t nbytes = kRhossStateLength,
const uint16_t repeat = kRhossDefaultRepeat);
#endif // SEND_RHOSS
#if SEND_AIRTON
void sendAirton(const uint64_t data, const uint16_t nbits = kAirtonBits,
const uint16_t repeat = kAirtonDefaultRepeat);
#endif // SEND_AIRTON
protected:
#ifdef UNIT_TEST
#ifndef HIGH
#define HIGH 0x1
#endif
#ifndef LOW
#define LOW 0x0
#endif
#endif // UNIT_TEST
uint8_t outputOn;
uint8_t outputOff;
VIRTUAL void ledOff();
VIRTUAL void ledOn();
#ifndef UNIT_TEST
private:
#else
uint32_t _freq_unittest;
#endif // UNIT_TEST
uint16_t onTimePeriod;
uint16_t offTimePeriod;
uint16_t IRpin;
int8_t periodOffset;
uint8_t _dutycycle;
bool modulation;
uint32_t calcUSecPeriod(uint32_t hz, bool use_offset = true);
#if SEND_SONY
void _sendSony(const uint64_t data, const uint16_t nbits,
const uint16_t repeat, const uint16_t freq);
#endif // SEND_SONY
};
#endif // IRSEND_H_