-
Notifications
You must be signed in to change notification settings - Fork 7
/
setup.py
56 lines (51 loc) · 1.79 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
from setuptools import setup, find_packages
from distutils.util import convert_path
main_ns = {}
ver_path = convert_path("embedding_encoder/_version.py")
with open(ver_path) as ver_file:
exec(ver_file.read(), main_ns)
packages = find_packages(".", exclude=["*.test", "*.test.*"])
here = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(here, "README.md"), encoding="utf-8") as f:
long_description = f.read()
setup(
name="embedding-encoder",
version=main_ns["__version__"],
description="scikit-learn compatible transformer that turns categorical features into dense numeric embeddings",
long_description=long_description,
long_description_content_type="text/markdown",
author="CPA Ferrere | Data Analytics",
license="MIT",
url="https://github.com/cpa-ferrere/EmbeddingEncoder",
classifiers=[
"Development Status :: 3 - Alpha",
"Intended Audience :: Science/Research",
"Intended Audience :: End Users/Desktop",
"Intended Audience :: Other Audience",
"Topic :: Sociology",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Operating System :: OS Independent",
],
keywords=[
"machine learning",
"neural network",
"deep learning",
"sklearn",
"scikit-learn",
],
install_requires=[
"scikit-learn",
"pandas",
],
extras_require={"tf": ["tensorflow>=2.8.0"],
"sns": ["seaborn"],
"full": ["tensorflow>=2.8.0", "seaborn"]},
include_package_data=True,
packages=packages,
python_requires=">=3.6",
)