-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwork_for_Robert.py
37 lines (29 loc) · 982 Bytes
/
work_for_Robert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy as np
import likelihood_with_h
import likelihood_with_Fij
import likelihood_with_h_recursive
import simulations_n_by_m
from functools import partial
test_data = []
P = np.array([[0.5, 0.7], [0.2, 0.8]], dtype=float)
Q = np.array([[6, 3], [1, 2]], dtype=int)
test_data.append((Q,P))
P = np.array([[1.0, 0.6], [0.7, 0.87]], dtype=float)
Q = np.array([[4, 3], [2, 2]], dtype=int)
test_data.append((Q,P))
P = np.array([[1.0, 0.6, 1], [0.7, 0.87, 0.7], [0.75, 0.8, 0.65]], dtype=float)
Q = np.array([[1, 2, 1], [2, 2, 1], [1, 1, 1]], dtype=int)
test_data.append((Q,P))
print("Start testing")
all_results = []
n = 10000
functions = []
functions.append(partial(simulations_n_by_m.freqMatingPattern, number_simu=1000))
functions.append(likelihood_with_h.likelihood)
functions.append(likelihood_with_Fij.likelihood)
for Q,P in test_data:
result = []
for func in functions:
result.append(func(Q,P))
all_results.append((Q,P,result))
print(all_results)