-
Notifications
You must be signed in to change notification settings - Fork 3.7k
/
decimal.go
803 lines (668 loc) · 19.5 KB
/
decimal.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
package types
import (
"encoding/json"
"errors"
"fmt"
"math/big"
"strconv"
"strings"
"testing"
)
var _ CustomProtobufType = (*Dec)(nil)
// NOTE: never use new(Dec) or else we will panic unmarshalling into the
// nil embedded big.Int
type Dec struct {
i *big.Int
}
const (
// number of decimal places
Precision = 18
// bytes required to represent the above precision
// Ceiling[Log2[999 999 999 999 999 999]]
DecimalPrecisionBits = 60
maxDecBitLen = maxBitLen + DecimalPrecisionBits
// max number of iterations in ApproxRoot function
maxApproxRootIterations = 100
)
var (
precisionReuse = new(big.Int).Exp(big.NewInt(10), big.NewInt(Precision), nil)
fivePrecision = new(big.Int).Quo(precisionReuse, big.NewInt(2))
precisionMultipliers []*big.Int
zeroInt = big.NewInt(0)
oneInt = big.NewInt(1)
tenInt = big.NewInt(10)
)
// Decimal errors
var (
ErrEmptyDecimalStr = errors.New("decimal string cannot be empty")
ErrInvalidDecimalLength = errors.New("invalid decimal length")
ErrInvalidDecimalStr = errors.New("invalid decimal string")
)
// Set precision multipliers
func init() {
precisionMultipliers = make([]*big.Int, Precision+1)
for i := 0; i <= Precision; i++ {
precisionMultipliers[i] = calcPrecisionMultiplier(int64(i))
}
}
func precisionInt() *big.Int {
return new(big.Int).Set(precisionReuse)
}
func ZeroDec() Dec { return Dec{new(big.Int).Set(zeroInt)} }
func OneDec() Dec { return Dec{precisionInt()} }
func SmallestDec() Dec { return Dec{new(big.Int).Set(oneInt)} }
// calculate the precision multiplier
func calcPrecisionMultiplier(prec int64) *big.Int {
if prec > Precision {
panic(fmt.Sprintf("too much precision, maximum %v, provided %v", Precision, prec))
}
zerosToAdd := Precision - prec
multiplier := new(big.Int).Exp(tenInt, big.NewInt(zerosToAdd), nil)
return multiplier
}
// get the precision multiplier, do not mutate result
func precisionMultiplier(prec int64) *big.Int {
if prec > Precision {
panic(fmt.Sprintf("too much precision, maximum %v, provided %v", Precision, prec))
}
return precisionMultipliers[prec]
}
// create a new Dec from integer assuming whole number
func NewDec(i int64) Dec {
return NewDecWithPrec(i, 0)
}
// create a new Dec from integer with decimal place at prec
// CONTRACT: prec <= Precision
func NewDecWithPrec(i, prec int64) Dec {
return Dec{
new(big.Int).Mul(big.NewInt(i), precisionMultiplier(prec)),
}
}
// create a new Dec from big integer assuming whole numbers
// CONTRACT: prec <= Precision
func NewDecFromBigInt(i *big.Int) Dec {
return NewDecFromBigIntWithPrec(i, 0)
}
// create a new Dec from big integer assuming whole numbers
// CONTRACT: prec <= Precision
func NewDecFromBigIntWithPrec(i *big.Int, prec int64) Dec {
return Dec{
new(big.Int).Mul(i, precisionMultiplier(prec)),
}
}
// create a new Dec from big integer assuming whole numbers
// CONTRACT: prec <= Precision
func NewDecFromInt(i Int) Dec {
return NewDecFromIntWithPrec(i, 0)
}
// create a new Dec from big integer with decimal place at prec
// CONTRACT: prec <= Precision
func NewDecFromIntWithPrec(i Int, prec int64) Dec {
return Dec{
new(big.Int).Mul(i.BigInt(), precisionMultiplier(prec)),
}
}
// create a decimal from an input decimal string.
// valid must come in the form:
// (-) whole integers (.) decimal integers
// examples of acceptable input include:
// -123.456
// 456.7890
// 345
// -456789
//
// NOTE - An error will return if more decimal places
// are provided in the string than the constant Precision.
//
// CONTRACT - This function does not mutate the input str.
func NewDecFromStr(str string) (Dec, error) {
if len(str) == 0 {
return Dec{}, ErrEmptyDecimalStr
}
// first extract any negative symbol
neg := false
if str[0] == '-' {
neg = true
str = str[1:]
}
if len(str) == 0 {
return Dec{}, ErrEmptyDecimalStr
}
strs := strings.Split(str, ".")
lenDecs := 0
combinedStr := strs[0]
if len(strs) == 2 { // has a decimal place
lenDecs = len(strs[1])
if lenDecs == 0 || len(combinedStr) == 0 {
return Dec{}, ErrInvalidDecimalLength
}
combinedStr += strs[1]
} else if len(strs) > 2 {
return Dec{}, ErrInvalidDecimalStr
}
if lenDecs > Precision {
return Dec{}, fmt.Errorf("invalid precision; max: %d, got: %d", Precision, lenDecs)
}
// add some extra zero's to correct to the Precision factor
zerosToAdd := Precision - lenDecs
zeros := fmt.Sprintf(`%0`+strconv.Itoa(zerosToAdd)+`s`, "")
combinedStr += zeros
combined, ok := new(big.Int).SetString(combinedStr, 10) // base 10
if !ok {
return Dec{}, fmt.Errorf("failed to set decimal string: %s", combinedStr)
}
if combined.BitLen() > maxBitLen {
return Dec{}, fmt.Errorf("decimal out of range; bitLen: got %d, max %d", combined.BitLen(), maxBitLen)
}
if neg {
combined = new(big.Int).Neg(combined)
}
return Dec{combined}, nil
}
// Decimal from string, panic on error
func MustNewDecFromStr(s string) Dec {
dec, err := NewDecFromStr(s)
if err != nil {
panic(err)
}
return dec
}
func (d Dec) IsNil() bool { return d.i == nil } // is decimal nil
func (d Dec) IsZero() bool { return (d.i).Sign() == 0 } // is equal to zero
func (d Dec) IsNegative() bool { return (d.i).Sign() == -1 } // is negative
func (d Dec) IsPositive() bool { return (d.i).Sign() == 1 } // is positive
func (d Dec) Equal(d2 Dec) bool { return (d.i).Cmp(d2.i) == 0 } // equal decimals
func (d Dec) GT(d2 Dec) bool { return (d.i).Cmp(d2.i) > 0 } // greater than
func (d Dec) GTE(d2 Dec) bool { return (d.i).Cmp(d2.i) >= 0 } // greater than or equal
func (d Dec) LT(d2 Dec) bool { return (d.i).Cmp(d2.i) < 0 } // less than
func (d Dec) LTE(d2 Dec) bool { return (d.i).Cmp(d2.i) <= 0 } // less than or equal
func (d Dec) Neg() Dec { return Dec{new(big.Int).Neg(d.i)} } // reverse the decimal sign
func (d Dec) Abs() Dec { return Dec{new(big.Int).Abs(d.i)} } // absolute value
// BigInt returns a copy of the underlying big.Int.
func (d Dec) BigInt() *big.Int {
if d.IsNil() {
return nil
}
cp := new(big.Int)
return cp.Set(d.i)
}
// addition
func (d Dec) Add(d2 Dec) Dec {
res := new(big.Int).Add(d.i, d2.i)
if res.BitLen() > maxDecBitLen {
panic("Int overflow")
}
return Dec{res}
}
// subtraction
func (d Dec) Sub(d2 Dec) Dec {
res := new(big.Int).Sub(d.i, d2.i)
if res.BitLen() > maxDecBitLen {
panic("Int overflow")
}
return Dec{res}
}
// multiplication
func (d Dec) Mul(d2 Dec) Dec {
mul := new(big.Int).Mul(d.i, d2.i)
chopped := chopPrecisionAndRound(mul)
if chopped.BitLen() > maxDecBitLen {
panic("Int overflow")
}
return Dec{chopped}
}
// multiplication truncate
func (d Dec) MulTruncate(d2 Dec) Dec {
mul := new(big.Int).Mul(d.i, d2.i)
chopped := chopPrecisionAndTruncate(mul)
if chopped.BitLen() > maxDecBitLen {
panic("Int overflow")
}
return Dec{chopped}
}
// multiplication
func (d Dec) MulInt(i Int) Dec {
mul := new(big.Int).Mul(d.i, i.i)
if mul.BitLen() > maxDecBitLen {
panic("Int overflow")
}
return Dec{mul}
}
// MulInt64 - multiplication with int64
func (d Dec) MulInt64(i int64) Dec {
mul := new(big.Int).Mul(d.i, big.NewInt(i))
if mul.BitLen() > maxDecBitLen {
panic("Int overflow")
}
return Dec{mul}
}
// quotient
func (d Dec) Quo(d2 Dec) Dec {
// multiply precision twice
mul := new(big.Int).Mul(d.i, precisionReuse)
mul.Mul(mul, precisionReuse)
quo := new(big.Int).Quo(mul, d2.i)
chopped := chopPrecisionAndRound(quo)
if chopped.BitLen() > maxDecBitLen {
panic("Int overflow")
}
return Dec{chopped}
}
// quotient truncate
func (d Dec) QuoTruncate(d2 Dec) Dec {
// multiply precision twice
mul := new(big.Int).Mul(d.i, precisionReuse)
mul.Mul(mul, precisionReuse)
quo := mul.Quo(mul, d2.i)
chopped := chopPrecisionAndTruncate(quo)
if chopped.BitLen() > maxDecBitLen {
panic("Int overflow")
}
return Dec{chopped}
}
// quotient, round up
func (d Dec) QuoRoundUp(d2 Dec) Dec {
// multiply precision twice
mul := new(big.Int).Mul(d.i, precisionReuse)
mul.Mul(mul, precisionReuse)
quo := new(big.Int).Quo(mul, d2.i)
chopped := chopPrecisionAndRoundUp(quo)
if chopped.BitLen() > maxDecBitLen {
panic("Int overflow")
}
return Dec{chopped}
}
// quotient
func (d Dec) QuoInt(i Int) Dec {
mul := new(big.Int).Quo(d.i, i.i)
return Dec{mul}
}
// QuoInt64 - quotient with int64
func (d Dec) QuoInt64(i int64) Dec {
mul := new(big.Int).Quo(d.i, big.NewInt(i))
return Dec{mul}
}
// ApproxRoot returns an approximate estimation of a Dec's positive real nth root
// using Newton's method (where n is positive). The algorithm starts with some guess and
// computes the sequence of improved guesses until an answer converges to an
// approximate answer. It returns `|d|.ApproxRoot() * -1` if input is negative.
// A maximum number of 100 iterations is used a backup boundary condition for
// cases where the answer never converges enough to satisfy the main condition.
func (d Dec) ApproxRoot(root uint64) (guess Dec, err error) {
defer func() {
if r := recover(); r != nil {
var ok bool
err, ok = r.(error)
if !ok {
err = errors.New("out of bounds")
}
}
}()
if d.IsNegative() {
absRoot, err := d.MulInt64(-1).ApproxRoot(root)
return absRoot.MulInt64(-1), err
}
if root == 1 || d.IsZero() || d.Equal(OneDec()) {
return d, nil
}
if root == 0 {
return OneDec(), nil
}
rootInt := NewIntFromUint64(root)
guess, delta := OneDec(), OneDec()
for iter := 0; delta.Abs().GT(SmallestDec()) && iter < maxApproxRootIterations; iter++ {
prev := guess.Power(root - 1)
if prev.IsZero() {
prev = SmallestDec()
}
delta = d.Quo(prev)
delta = delta.Sub(guess)
delta = delta.QuoInt(rootInt)
guess = guess.Add(delta)
}
return guess, nil
}
// Power returns a the result of raising to a positive integer power
func (d Dec) Power(power uint64) Dec {
if power == 0 {
return OneDec()
}
tmp := OneDec()
for i := power; i > 1; {
if i%2 != 0 {
tmp = tmp.Mul(d)
}
i /= 2
d = d.Mul(d)
}
return d.Mul(tmp)
}
// ApproxSqrt is a wrapper around ApproxRoot for the common special case
// of finding the square root of a number. It returns -(sqrt(abs(d)) if input is negative.
func (d Dec) ApproxSqrt() (Dec, error) {
return d.ApproxRoot(2)
}
// is integer, e.g. decimals are zero
func (d Dec) IsInteger() bool {
return new(big.Int).Rem(d.i, precisionReuse).Sign() == 0
}
// format decimal state
func (d Dec) Format(s fmt.State, verb rune) {
_, err := s.Write([]byte(d.String()))
if err != nil {
panic(err)
}
}
func (d Dec) String() string {
if d.i == nil {
return d.i.String()
}
isNeg := d.IsNegative()
if isNeg {
d = d.Neg()
}
bzInt, err := d.i.MarshalText()
if err != nil {
return ""
}
inputSize := len(bzInt)
var bzStr []byte
// TODO: Remove trailing zeros
// case 1, purely decimal
if inputSize <= Precision {
bzStr = make([]byte, Precision+2)
// 0. prefix
bzStr[0] = byte('0')
bzStr[1] = byte('.')
// set relevant digits to 0
for i := 0; i < Precision-inputSize; i++ {
bzStr[i+2] = byte('0')
}
// set final digits
copy(bzStr[2+(Precision-inputSize):], bzInt)
} else {
// inputSize + 1 to account for the decimal point that is being added
bzStr = make([]byte, inputSize+1)
decPointPlace := inputSize - Precision
copy(bzStr, bzInt[:decPointPlace]) // pre-decimal digits
bzStr[decPointPlace] = byte('.') // decimal point
copy(bzStr[decPointPlace+1:], bzInt[decPointPlace:]) // post-decimal digits
}
if isNeg {
return "-" + string(bzStr)
}
return string(bzStr)
}
// Float64 returns the float64 representation of a Dec.
// Will return the error if the conversion failed.
func (d Dec) Float64() (float64, error) {
return strconv.ParseFloat(d.String(), 64)
}
// MustFloat64 returns the float64 representation of a Dec.
// Would panic if the conversion failed.
func (d Dec) MustFloat64() float64 {
if value, err := strconv.ParseFloat(d.String(), 64); err != nil {
panic(err)
} else {
return value
}
}
// ____
// __| |__ "chop 'em
// ` \ round!"
// ___|| ~ _ -bankers
// | | __
// | | | __|__|__
// |_____: / | $$$ |
// |________|
// Remove a Precision amount of rightmost digits and perform bankers rounding
// on the remainder (gaussian rounding) on the digits which have been removed.
//
// Mutates the input. Use the non-mutative version if that is undesired
func chopPrecisionAndRound(d *big.Int) *big.Int {
// remove the negative and add it back when returning
if d.Sign() == -1 {
// make d positive, compute chopped value, and then un-mutate d
d = d.Neg(d)
d = chopPrecisionAndRound(d)
d = d.Neg(d)
return d
}
// get the truncated quotient and remainder
quo, rem := d, big.NewInt(0)
quo, rem = quo.QuoRem(d, precisionReuse, rem)
if rem.Sign() == 0 { // remainder is zero
return quo
}
switch rem.Cmp(fivePrecision) {
case -1:
return quo
case 1:
return quo.Add(quo, oneInt)
default: // bankers rounding must take place
// always round to an even number
if quo.Bit(0) == 0 {
return quo
}
return quo.Add(quo, oneInt)
}
}
func chopPrecisionAndRoundUp(d *big.Int) *big.Int {
// remove the negative and add it back when returning
if d.Sign() == -1 {
// make d positive, compute chopped value, and then un-mutate d
d = d.Neg(d)
// truncate since d is negative...
d = chopPrecisionAndTruncate(d)
d = d.Neg(d)
return d
}
// get the truncated quotient and remainder
quo, rem := d, big.NewInt(0)
quo, rem = quo.QuoRem(d, precisionReuse, rem)
if rem.Sign() == 0 { // remainder is zero
return quo
}
return quo.Add(quo, oneInt)
}
func chopPrecisionAndRoundNonMutative(d *big.Int) *big.Int {
tmp := new(big.Int).Set(d)
return chopPrecisionAndRound(tmp)
}
// RoundInt64 rounds the decimal using bankers rounding
func (d Dec) RoundInt64() int64 {
chopped := chopPrecisionAndRoundNonMutative(d.i)
if !chopped.IsInt64() {
panic("Int64() out of bound")
}
return chopped.Int64()
}
// RoundInt round the decimal using bankers rounding
func (d Dec) RoundInt() Int {
return NewIntFromBigInt(chopPrecisionAndRoundNonMutative(d.i))
}
// chopPrecisionAndTruncate is similar to chopPrecisionAndRound,
// but always rounds down. It does not mutate the input.
func chopPrecisionAndTruncate(d *big.Int) *big.Int {
return new(big.Int).Quo(d, precisionReuse)
}
// TruncateInt64 truncates the decimals from the number and returns an int64
func (d Dec) TruncateInt64() int64 {
chopped := chopPrecisionAndTruncate(d.i)
if !chopped.IsInt64() {
panic("Int64() out of bound")
}
return chopped.Int64()
}
// TruncateInt truncates the decimals from the number and returns an Int
func (d Dec) TruncateInt() Int {
return NewIntFromBigInt(chopPrecisionAndTruncate(d.i))
}
// TruncateDec truncates the decimals from the number and returns a Dec
func (d Dec) TruncateDec() Dec {
return NewDecFromBigInt(chopPrecisionAndTruncate(d.i))
}
// Ceil returns the smallest interger value (as a decimal) that is greater than
// or equal to the given decimal.
func (d Dec) Ceil() Dec {
tmp := new(big.Int).Set(d.i)
quo, rem := tmp, big.NewInt(0)
quo, rem = quo.QuoRem(tmp, precisionReuse, rem)
// no need to round with a zero remainder regardless of sign
if rem.Cmp(zeroInt) == 0 {
return NewDecFromBigInt(quo)
}
if rem.Sign() == -1 {
return NewDecFromBigInt(quo)
}
return NewDecFromBigInt(quo.Add(quo, oneInt))
}
// MaxSortableDec is the largest Dec that can be passed into SortableDecBytes()
// Its negative form is the least Dec that can be passed in.
var MaxSortableDec = OneDec().Quo(SmallestDec())
// ValidSortableDec ensures that a Dec is within the sortable bounds,
// a Dec can't have a precision of less than 10^-18.
// Max sortable decimal was set to the reciprocal of SmallestDec.
func ValidSortableDec(dec Dec) bool {
return dec.Abs().LTE(MaxSortableDec)
}
// SortableDecBytes returns a byte slice representation of a Dec that can be sorted.
// Left and right pads with 0s so there are 18 digits to left and right of the decimal point.
// For this reason, there is a maximum and minimum value for this, enforced by ValidSortableDec.
func SortableDecBytes(dec Dec) []byte {
if !ValidSortableDec(dec) {
panic("dec must be within bounds")
}
// Instead of adding an extra byte to all sortable decs in order to handle max sortable, we just
// makes its bytes be "max" which comes after all numbers in ASCIIbetical order
if dec.Equal(MaxSortableDec) {
return []byte("max")
}
// For the same reason, we make the bytes of minimum sortable dec be --, which comes before all numbers.
if dec.Equal(MaxSortableDec.Neg()) {
return []byte("--")
}
// We move the negative sign to the front of all the left padded 0s, to make negative numbers come before positive numbers
if dec.IsNegative() {
return append([]byte("-"), []byte(fmt.Sprintf(fmt.Sprintf("%%0%ds", Precision*2+1), dec.Abs().String()))...)
}
return []byte(fmt.Sprintf(fmt.Sprintf("%%0%ds", Precision*2+1), dec.String()))
}
// reuse nil values
var nilJSON []byte
func init() {
empty := new(big.Int)
bz, _ := empty.MarshalText()
nilJSON, _ = json.Marshal(string(bz))
}
// MarshalJSON marshals the decimal
func (d Dec) MarshalJSON() ([]byte, error) {
if d.i == nil {
return nilJSON, nil
}
return json.Marshal(d.String())
}
// UnmarshalJSON defines custom decoding scheme
func (d *Dec) UnmarshalJSON(bz []byte) error {
if d.i == nil {
d.i = new(big.Int)
}
var text string
err := json.Unmarshal(bz, &text)
if err != nil {
return err
}
// TODO: Reuse dec allocation
newDec, err := NewDecFromStr(text)
if err != nil {
return err
}
d.i = newDec.i
return nil
}
// MarshalYAML returns the YAML representation.
func (d Dec) MarshalYAML() (interface{}, error) {
return d.String(), nil
}
// Marshal implements the gogo proto custom type interface.
func (d Dec) Marshal() ([]byte, error) {
if d.i == nil {
d.i = new(big.Int)
}
return d.i.MarshalText()
}
// MarshalTo implements the gogo proto custom type interface.
func (d *Dec) MarshalTo(data []byte) (n int, err error) {
if d.i == nil {
d.i = new(big.Int)
}
if d.i.Cmp(zeroInt) == 0 {
copy(data, []byte{0x30})
return 1, nil
}
bz, err := d.Marshal()
if err != nil {
return 0, err
}
copy(data, bz)
return len(bz), nil
}
// Unmarshal implements the gogo proto custom type interface.
func (d *Dec) Unmarshal(data []byte) error {
if len(data) == 0 {
d = nil
return nil
}
if d.i == nil {
d.i = new(big.Int)
}
if err := d.i.UnmarshalText(data); err != nil {
return err
}
if d.i.BitLen() > maxBitLen {
return fmt.Errorf("decimal out of range; got: %d, max: %d", d.i.BitLen(), maxBitLen)
}
return nil
}
// Size implements the gogo proto custom type interface.
func (d *Dec) Size() int {
bz, _ := d.Marshal()
return len(bz)
}
// Override Amino binary serialization by proxying to protobuf.
func (d Dec) MarshalAmino() ([]byte, error) { return d.Marshal() }
func (d *Dec) UnmarshalAmino(bz []byte) error { return d.Unmarshal(bz) }
func (dp DecProto) String() string {
return dp.Dec.String()
}
// helpers
// test if two decimal arrays are equal
func DecsEqual(d1s, d2s []Dec) bool {
if len(d1s) != len(d2s) {
return false
}
for i, d1 := range d1s {
if !d1.Equal(d2s[i]) {
return false
}
}
return true
}
// minimum decimal between two
func MinDec(d1, d2 Dec) Dec {
if d1.LT(d2) {
return d1
}
return d2
}
// maximum decimal between two
func MaxDec(d1, d2 Dec) Dec {
if d1.LT(d2) {
return d2
}
return d1
}
// intended to be used with require/assert: require.True(DecEq(...))
func DecEq(t *testing.T, exp, got Dec) (*testing.T, bool, string, string, string) {
return t, exp.Equal(got), "expected:\t%v\ngot:\t\t%v", exp.String(), got.String()
}