-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrain.py
136 lines (98 loc) · 4.87 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import sys
sys.dont_write_bytecode = True
import os
import torch
import torch.nn.parallel
import torch.optim as optim
import numpy as np
from tensorboardX import SummaryWriter
import Utils.opts as opts
from Utils.dataset_thumos import VideoDataSet as VideoDataSet_thumos
from Models.VSGN import VSGN
import datetime
from collections import defaultdict
torch.manual_seed(21)
def Train_VSGN(opt):
path_appendix = '_'.join(string for string in opt['checkpoint_path'].split('_')[1:])
writer = SummaryWriter(logdir='runs/' + path_appendix)
model = VSGN(opt)
device = "cuda"
model = torch.nn.DataParallel(model)
model.to(device)
optimizer = optim.Adam(model.parameters(), lr=opt["train_lr"], weight_decay=opt["weight_decay"])
start_epoch = 0
kwargs = {'num_workers': 16, 'pin_memory': True, 'drop_last': True}
train_loader = torch.utils.data.DataLoader(VideoDataSet_thumos(opt, subset="train"),
batch_size=opt["batch_size"], shuffle=True,
**kwargs)
test_loader = torch.utils.data.DataLoader(VideoDataSet_thumos(opt, subset="validation"),
batch_size=opt["batch_size"], shuffle=False,
**kwargs)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=opt["step_size"], gamma=opt["step_gamma"])
for epoch in range(start_epoch, opt["num_epoch"]):
train_SegTAD_epoch(train_loader, model, optimizer, epoch, writer, opt)
epoch_loss = test_SegTAD_epoch(test_loader, model, epoch, writer, opt)
print((datetime.datetime.now()))
state = {'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()}
torch.save(state, opt["checkpoint_path"] + "/checkpoint.pth.tar")
if epoch_loss < model.module.tem_best_loss:
print((datetime.datetime.now()))
print('The best model up to now is from Epoch {}'.format(epoch))
model.module.tem_best_loss = np.mean(epoch_loss)
torch.save(state, opt["checkpoint_path"] + "/best.pth.tar")
scheduler.step()
writer.close()
def train_SegTAD_epoch(data_loader, model, optimizer, epoch, writer, opt, is_train=True):
if is_train:
model.train()
else:
model.eval()
epoch_losses = defaultdict(float)
for n_iter, (input_data, gt_action, gt_start, gt_end, gt_bbox, num_gt, num_frms) in enumerate(data_loader):
with torch.set_grad_enabled(is_train):
losses, pred_action, pred_start, pred_end = model(input_data, num_frms, gt_action, gt_start, gt_end, gt_bbox, num_gt)
# Overall loss
loss_cls_dec = torch.mean(losses['loss_cls_dec'])
loss_reg_dec = torch.mean(losses['loss_reg_dec'])
loss_action = torch.mean(losses['loss_action'])
loss_start = torch.mean(losses['loss_start'])
loss_end = torch.mean(losses['loss_end'])
loss_bd_adjust = torch.mean(losses['loss_bd_adjust'])
loss = loss_cls_dec + loss_reg_dec + 0.2*loss_action + 0.2*loss_start +0.2*loss_end + loss_bd_adjust
if is_train:
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_losses['loss'] += loss.cpu().detach().numpy()
epoch_losses['loss_cls_dec'] += loss_cls_dec.cpu().detach().numpy()
epoch_losses['loss_reg_dec'] += loss_reg_dec.cpu().detach().numpy()
epoch_losses['loss_action'] += loss_action.cpu().detach().numpy()
epoch_losses['loss_start'] += loss_start.cpu().detach().numpy()
epoch_losses['loss_end'] += loss_end.cpu().detach().numpy()
epoch_losses['loss_bd_adjust'] += loss_bd_adjust.cpu().detach().numpy()
for k, v in epoch_losses.items():
epoch_losses[k] = v / (n_iter + 1)
to_print = ["%s loss (epoch %d): " % ('Train' if is_train else 'Val', epoch)]
for k, v in epoch_losses.items():
writer.add_scalar('%s/%s' % ('train' if is_train else 'val', k), v, epoch)
writer.flush()
to_print.append('%s: %.04f' % (k, v))
print(' '.join(to_print))
return epoch_losses['loss']
def test_SegTAD_epoch(data_loader, model, epoch, writer, opt):
return train_SegTAD_epoch(data_loader, model, None, epoch, writer, opt, is_train=False)
if __name__ == '__main__':
print(datetime.datetime.now())
opt = opts.parse_opt()
opt = vars(opt)
if not os.path.exists(opt["checkpoint_path"]):
os.makedirs(opt["checkpoint_path"])
print(opt)
print("---------------------------------------------------------------------------------------------")
print("Training starts!")
print("---------------------------------------------------------------------------------------------")
Train_VSGN(opt)
print("Training finishes!")
print(datetime.datetime.now())