- Download repo
git clone https://github.com/continental/guided-concept-projection-vectors.git
- Create & activate venv (optionally)
We used Python 3.9.17
python -m venv gcpv_venv
source ./gcpv_venv/bin/activate
- Install requirements
pip install -r requirements.txt
Execute: ./data/download_ms_coco_2017val_dataset.sh
- Optimize GCPVs for a single sample:
./demo/gcpv_optimization.ipynb
- Optimize & cluster several GCPVs + weak concept localization:
./demo/gcpv_clustering.ipynb
- Find subconcepts with GCPVs + weak sub-concept localization:
./demo/gcpv_clustering_subconcepts.ipynb
ArXiv.org:
@article{mikriukov2023gcpv,
title={GCPV: Guided Concept Projection Vectors for the Explainable Inspection of CNN Feature Spaces},
author={Mikriukov, Georgii and Schwalbe, Gesina and Hellert, Christian and Bade, Korinna},
journal={arXiv preprint arXiv:2311.14435},
year={2023}
}
For further help, see the API-documentation or contact the maintainers.
Copyright (C) 2024 co-pace GmbH (a subsidiary of Continental AG). All rights reserved.