-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
podman-run.1.md
2016 lines (1358 loc) · 90.7 KB
/
podman-run.1.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% podman-run(1)
## NAME
podman\-run - Run a command in a new container
## SYNOPSIS
**podman run** [*options*] *image* [*command* [*arg* ...]]
**podman container run** [*options*] *image* [*command* [*arg* ...]]
## DESCRIPTION
Run a process in a new container. **podman run** starts a process with its own
file system, its own networking, and its own isolated process tree. The _image_
which starts the process may define defaults related to the process that will be
run in the container, the networking to expose, and more, but **podman run**
gives final control to the operator or administrator who starts the container
from the image. For that reason **podman run** has more options than any other
Podman command.
If the _image_ is not already loaded then **podman run** will pull the _image_, and
all image dependencies, from the repository in the same way running **podman
pull** _image_ , before it starts the container from that image.
Several files will be automatically created within the container. These include
_/etc/hosts_, _/etc/hostname_, and _/etc/resolv.conf_ to manage networking.
These will be based on the host's version of the files, though they can be
customized with options (for example, **--dns** will override the host's DNS
servers in the created _resolv.conf_). Additionally, a container environment
file is created in each container to indicate to programs they are running in a
container. This file is located at _/run/.containerenv_. When using the
--privileged flag the .containerenv contains name/value pairs indicating the
container engine version, whether the engine is running in rootless mode, the
container name and id, as well as the image name and id that the container is based on.
When running from a user defined network namespace, the _/etc/netns/NSNAME/resolv.conf_
will be used if it exists, otherwise _/etc/resolv.conf_ will be used.
Default settings are defined in `containers.conf`. Most settings for remote
connections use the servers containers.conf, except when documented in man
pages.
## IMAGE
The image is specified using transport:path format. If no transport is specified, the `docker` (container registry)
transport will be used by default. For remote Podman, including Mac and Windows (excluding WSL2) machines, `docker` is the only allowed transport.
**dir:**_path_
An existing local directory _path_ storing the manifest, layer tarballs and signatures as individual files. This
is a non-standardized format, primarily useful for debugging or noninvasive container inspection.
$ podman save --format docker-dir fedora -o /tmp/fedora
$ podman run dir:/tmp/fedora echo hello
**docker://**_docker-reference_ (Default)
An image reference stored in a remote container image registry. Example: "quay.io/podman/stable:latest".
The reference can include a path to a specific registry; if it does not, the
registries listed in registries.conf will be queried to find a matching image.
By default, credentials from `podman login` (stored at
$XDG_RUNTIME_DIR/containers/auth.json by default) will be used to authenticate;
otherwise it falls back to using credentials in $HOME/.docker/config.json.
$ podman run registry.fedoraproject.org/fedora:latest echo hello
**docker-archive:**_path_[**:**_docker-reference_]
An image stored in the `docker save` formatted file. _docker-reference_ is only used when creating such a
file, and it must not contain a digest.
$ podman save --format docker-archive fedora -o /tmp/fedora
$ podman run docker-archive:/tmp/fedora echo hello
**docker-daemon:**_docker-reference_
An image in _docker-reference_ format stored in the docker daemon internal storage. The _docker-reference_ can also be an image ID (docker-daemon:algo:digest).
$ sudo docker pull fedora
$ sudo podman run docker-daemon:docker.io/library/fedora echo hello
**oci-archive:**_path_**:**_tag_
An image in a directory compliant with the "Open Container Image Layout Specification" at the specified _path_
and specified with a _tag_.
$ podman save --format oci-archive fedora -o /tmp/fedora
$ podman run oci-archive:/tmp/fedora echo hello
## OPTIONS
#### **--add-host**=_host_:_ip_
Add a line to container's _/etc/hosts_ for custom host-to-IP mapping.
This option can be set multiple times.
#### **--annotation**=_key_=_value_
Add an annotation to the container.
This option can be set multiple times.
#### **--arch**=*ARCH*
Override the architecture, defaults to hosts, of the image to be pulled. For example, `arm`.
#### **--attach**, **-a**=**stdin**|**stdout**|**stderr**
Attach to STDIN, STDOUT or STDERR.
In foreground mode (the default when **-d**
is not specified), **podman run** can start the process in the container
and attach the console to the process's standard input, output, and
error. It can even pretend to be a TTY (this is what most commandline
executables expect) and pass along signals. The **-a** option can be set for
each of **stdin**, **stdout**, and **stderr**.
#### **--authfile**[=*path*]
Path to the authentication file. Default is *${XDG_RUNTIME_DIR}/containers/auth.json*.
Note: You can also override the default path of the authentication file by setting the **REGISTRY_AUTH_FILE**
environment variable.
#### **--blkio-weight**=*weight*
Block IO relative weight. The _weight_ is a value between **10** and **1000**.
#### **--blkio-weight-device**=*device*:*weight*
Block IO relative device weight.
#### **--cap-add**=*capability*
Add Linux capabilities.
#### **--cap-drop**=*capability*
Drop Linux capabilities.
#### **--cgroup-conf**=*KEY=VALUE*
When running on cgroup v2, specify the cgroup file to write to and its value. For example **--cgroup-conf=memory.high=1073741824** sets the memory.high limit to 1GB.
#### **--cgroup-parent**=*path*
Path to cgroups under which the cgroup for the container will be created. If the path is not absolute, the path is considered to be relative to the cgroups path of the init process. Cgroups will be created if they do not already exist.
#### **--cgroupns**=*mode*
Set the cgroup namespace mode for the container.
- **host**: use the host's cgroup namespace inside the container.
- **container:**_id_: join the namespace of the specified container.
- **private**: create a new cgroup namespace.
- **ns:**_path_: join the namespace at the specified path.
If the host uses cgroups v1, the default is set to **host**. On cgroups v2, the default is **private**.
#### **--cgroups**=**enabled**|**disabled**|**no-conmon**|**split**
Determines whether the container will create CGroups.
Default is **enabled**.
The **enabled** option will create a new cgroup under the cgroup-parent.
The **disabled** option will force the container to not create CGroups, and thus conflicts with CGroup options (**--cgroupns** and **--cgroup-parent**).
The **no-conmon** option disables a new CGroup only for the **conmon** process.
The **split** option splits the current CGroup in two sub-cgroups: one for conmon and one for the container payload. It is not possible to set **--cgroup-parent** with **split**.
#### **--chrootdirs**=*path*
Path to a directory inside the container that should be treated as a `chroot` directory.
Any Podman managed file (e.g., /etc/resolv.conf, /etc/hosts, etc/hostname) that is mounted into the root directory will be mounted into that location as well.
Multiple directories should be separated with a comma.
#### **--cidfile**=*file*
Write the container ID to *file*.
#### **--conmon-pidfile**=*file*
Write the pid of the **conmon** process to a file. As **conmon** runs in a separate process than Podman, this is necessary when using systemd to restart Podman containers.
(This option is not available with the remote Podman client, including Mac and Windows (excluding WSL2) machines)
#### **--cpu-period**=*limit*
Set the CPU period for the Completely Fair Scheduler (CFS), which is a
duration in microseconds. Once the container's CPU quota is used up, it will
not be scheduled to run until the current period ends. Defaults to 100000
microseconds.
On some systems, changing the CPU limits may not be allowed for non-root
users. For more details, see
https://github.com/containers/podman/blob/main/troubleshooting.md#26-running-containers-with-cpu-limits-fails-with-a-permissions-error
#### **--cpu-quota**=*limit*
Limit the CPU Completely Fair Scheduler (CFS) quota.
Limit the container's CPU usage. By default, containers run with the full
CPU resource. The limit is a number in microseconds. If you provide a number,
the container will be allowed to use that much CPU time until the CPU period
ends (controllable via **--cpu-period**).
On some systems, changing the CPU limits may not be allowed for non-root
users. For more details, see
https://github.com/containers/podman/blob/main/troubleshooting.md#26-running-containers-with-cpu-limits-fails-with-a-permissions-error
#### **--cpu-rt-period**=*microseconds*
Limit the CPU real-time period in microseconds.
Limit the container's Real Time CPU usage. This flag tell the kernel to restrict the container's Real Time CPU usage to the period you specify.
This flag is not supported on cgroups V2 systems.
#### **--cpu-rt-runtime**=*microseconds*
Limit the CPU real-time runtime in microseconds.
Limit the containers Real Time CPU usage. This flag tells the kernel to limit the amount of time in a given CPU period Real Time tasks may consume. Ex:
Period of 1,000,000us and Runtime of 950,000us means that this container could consume 95% of available CPU and leave the remaining 5% to normal priority tasks.
The sum of all runtimes across containers cannot exceed the amount allotted to the parent cgroup.
This flag is not supported on cgroups V2 systems.
#### **--cpu-shares**=*shares*
CPU shares (relative weight).
By default, all containers get the same proportion of CPU cycles. This proportion
can be modified by changing the container's CPU share weighting relative
to the combined weight of all the running containers. Default weight is **1024**.
The proportion will only apply when CPU-intensive processes are running.
When tasks in one container are idle, other containers can use the
left-over CPU time. The actual amount of CPU time will vary depending on
the number of containers running on the system.
For example, consider three containers, one has a cpu-share of 1024 and
two others have a cpu-share setting of 512. When processes in all three
containers attempt to use 100% of CPU, the first container would receive
50% of the total CPU time. If you add a fourth container with a cpu-share
of 1024, the first container only gets 33% of the CPU. The remaining containers
receive 16.5%, 16.5% and 33% of the CPU.
On a multi-core system, the shares of CPU time are distributed over all CPU
cores. Even if a container is limited to less than 100% of CPU time, it can
use 100% of each individual CPU core.
For example, consider a system with more than three cores. If you start one
container **{C0}** with **--cpu-shares=512** running one process, and another container
**{C1}** with **--cpu-shares=1024** running two processes, this can result in the following
division of CPU shares:
| PID | container | CPU | CPU share |
| ---- | ----------- | ------- | ------------ |
| 100 | {C0} | 0 | 100% of CPU0 |
| 101 | {C1} | 1 | 100% of CPU1 |
| 102 | {C1} | 2 | 100% of CPU2 |
#### **--cpus**=*number*
Number of CPUs. The default is *0.0* which means no limit. This is shorthand
for **--cpu-period** and **--cpu-quota**, so you may only set either
#### **--cpus** or **--cpu-period** and **--cpu-quota**.
On some systems, changing the CPU limits may not be allowed for non-root
users. For more details, see
https://github.com/containers/podman/blob/main/troubleshooting.md#26-running-containers-with-cpu-limits-fails-with-a-permissions-error
#### **--cpuset-cpus**=*number*
CPUs in which to allow execution. Can be specified as a comma-separated list
(e.g. **0,1**), as a range (e.g. **0-3**), or any combination thereof
(e.g. **0-3,7,11-15**).
#### **--cpuset-mems**=*nodes*
Memory nodes (MEMs) in which to allow execution. Only effective on NUMA systems.
For example, if you have four memory nodes (0-3) on your system, use **--cpuset-mems=0,1**
to only use memory from the first two memory nodes.
#### **--detach**, **-d**
Detached mode: run the container in the background and print the new container ID. The default is *false*.
At any time you can run **podman ps** in
the other shell to view a list of the running containers. You can reattach to a
detached container with **podman attach**.
When attached in the tty mode, you can detach from the container (and leave it
running) using a configurable key sequence. The default sequence is `ctrl-p,ctrl-q`.
Configure the keys sequence using the **--detach-keys** option, or specifying
it in the **containers.conf** file: see **containers.conf(5)** for more information.
#### **--detach-keys**=*sequence*
Specify the key sequence for detaching a container. Format is a single character `[a-Z]` or one or more `ctrl-<value>` characters where `<value>` is one of: `a-z`, `@`, `^`, `[`, `,` or `_`. Specifying "" will set the sequence to the default value of *ctrl-p,ctrl-q*.
This option can also be set in **containers.conf**(5) file.
#### **--device**=_host-device_[**:**_container-device_][**:**_permissions_]
Add a host device to the container. Optional *permissions* parameter
can be used to specify device permissions, it is combination of
**r** for read, **w** for write, and **m** for **mknod**(2).
Example: **--device=/dev/sdc:/dev/xvdc:rwm**.
Note: if _host_device_ is a symbolic link then it will be resolved first.
The container will only store the major and minor numbers of the host device.
Note: if the user only has access rights via a group, accessing the device
from inside a rootless container will fail. Use the `--group-add keep-groups`
flag to pass the user's supplementary group access into the container.
Podman may load kernel modules required for using the specified
device. The devices that Podman will load modules when necessary are:
/dev/fuse.
#### **--device-cgroup-rule**=rule
Add a rule to the cgroup allowed devices list
#### **--device-read-bps**=_path_:_rate_
Limit read rate (in bytes per second) from a device (e.g. **--device-read-bps=/dev/sda:1mb**).
#### **--device-read-iops**=_path_:_rate_
Limit read rate (in IO operations per second) from a device (e.g. **--device-read-iops=/dev/sda:1000**).
#### **--device-write-bps**=_path_:_rate_
Limit write rate (in bytes per second) to a device (e.g. **--device-write-bps=/dev/sda:1mb**).
#### **--device-write-iops**=_path_:_rate_
Limit write rate (in IO operations per second) to a device (e.g. **--device-write-iops=/dev/sda:1000**).
#### **--disable-content-trust**
This is a Docker specific option to disable image verification to a Docker
registry and is not supported by Podman. This flag is a NOOP and provided
solely for scripting compatibility.
#### **--dns**=*ipaddr*
Set custom DNS servers. Invalid if using **--dns** with **--network** that is set to **none** or **container:**_id_.
This option can be used to override the DNS
configuration passed to the container. Typically this is necessary when the
host DNS configuration is invalid for the container (e.g., **127.0.0.1**). When this
is the case the **--dns** flag is necessary for every run.
The special value **none** can be specified to disable creation of _/etc/resolv.conf_ in the container by Podman.
The _/etc/resolv.conf_ file in the image will be used without changes.
#### **--dns-opt**=*option*
Set custom DNS options. Invalid if using **--dns-opt** with **--network** that is set to **none** or **container:**_id_.
#### **--dns-search**=*domain*
Set custom DNS search domains. Invalid if using **--dns-search** and **--network** that is set to **none** or **container:**_id_.
Use **--dns-search=.** if you don't wish to set the search domain.
#### **--entrypoint**=*"command"* | *'["command", "arg1", ...]'*
Overwrite the default ENTRYPOINT of the image.
This option allows you to overwrite the default entrypoint of the image.
The ENTRYPOINT of an image is similar to a COMMAND
because it specifies what executable to run when the container starts, but it is
(purposely) more difficult to override. The ENTRYPOINT gives a container its
default nature or behavior, so that when you set an ENTRYPOINT you can run the
container as if it were that binary, complete with default options, and you can
pass in more options via the COMMAND. But, sometimes an operator may want to run
something else inside the container, so you can override the default ENTRYPOINT
at runtime by using a **--entrypoint** and a string to specify the new
ENTRYPOINT.
You need to specify multi option commands in the form of a json string.
#### **--env**, **-e**=*env*
Set environment variables.
This option allows arbitrary environment variables that are available for the process to be launched inside of the container. If an environment variable is specified without a value, Podman will check the host environment for a value and set the variable only if it is set on the host. If an environment variable ending in __*__ is specified, Podman will search the host environment for variables starting with the prefix and will add those variables to the container. If an environment variable with a trailing __*__ is specified, then a value must be supplied.
See [**Environment**](#environment) note below for precedence and examples.
#### **--env-file**=*file*
Read in a line delimited file of environment variables. See **Environment** note below for precedence.
#### **--env-host**
Use host environment inside of the container. See **Environment** note below for precedence. (This option is not available with the remote Podman client, including Mac and Windows (excluding WSL2) machines)
#### **--expose**=*port*
Expose a port, or a range of ports (e.g. **--expose=3300-3310**) to set up port redirection
on the host system.
#### **--gidmap**=*container_gid*:*host_gid*:*amount*
Run the container in a new user namespace using the supplied mapping. This option conflicts with the **--userns** and **--subgidname** flags.
This option can be passed several times to map different ranges. If calling **podman run** as an unprivileged user, the user needs to have the right to use the mapping. See **subuid**(5).
The example maps gids **0-1999** in the container to the gids **30000-31999** on the host: **--gidmap=0:30000:2000**.
**Important note:** The new user namespace mapping based on **--gidmap** is based on the initial mapping made in the _/etc/subgid_ file.
Assuming there is a _/etc/subgid_ mapping **groupname:100000:65536**, then **groupname** is initially mapped to a namespace starting with
gid **100000** for **65536** ids. From here the **--gidmap** mapping to the new namespace starts from **0** again, but is based on the initial mapping.
Meaning **groupname** is initially mapped to gid **100000** which is referenced as **0** in the following **--gidmap** mapping. In terms of the example
above: The group **groupname** is mapped to group **100000** of the initial namespace then the
**30000**st id of this namespace (which is gid 130000 in this namespace) is mapped to container namespace group id **0**. (groupname -> 100000 / 30000 -> 0)
Note: the **--gidmap** flag cannot be called in conjunction with the **--pod** flag as a gidmap cannot be set on the container level when in a pod.
#### **--group-add**=*group|keep-groups*
Assign additional groups to the primary user running within the container process.
- `keep-groups` is a special flag that tells Podman to keep the supplementary group access.
Allows container to use the user's supplementary group access. If file systems or
devices are only accessible by the rootless user's group, this flag tells the OCI
runtime to pass the group access into the container. Currently only available
with the `crun` OCI runtime. Note: `keep-groups` is exclusive, you cannot add any other groups
with this flag. (Not available for remote commands, including Mac and Windows (excluding WSL2) machines)
#### **--health-cmd**=*"command"* | *'["command", "arg1", ...]'*
Set or alter a healthcheck command for a container. The command is a command to be executed inside your
container that determines your container health. The command is required for other healthcheck options
to be applied. A value of **none** disables existing healthchecks.
Multiple options can be passed in the form of a JSON array; otherwise, the command will be interpreted
as an argument to **/bin/sh -c**.
#### **--health-interval**=*interval*
Set an interval for the healthchecks. An _interval_ of **disable** results in no automatic timer setup. The default is **30s**.
#### **--health-retries**=*retries*
The number of retries allowed before a healthcheck is considered to be unhealthy. The default value is **3**.
#### **--health-start-period**=*period*
The initialization time needed for a container to bootstrap. The value can be expressed in time format like
**2m3s**. The default value is **0s**.
#### **--health-timeout**=*timeout*
The maximum time allowed to complete the healthcheck before an interval is considered failed. Like start-period, the
value can be expressed in a time format such as **1m22s**. The default value is **30s**.
#### **--help**
Print usage statement
#### **--hostname**=*name*, **-h**
Container host name
Sets the container host name that is available inside the container. Can only be used with a private UTS namespace `--uts=private` (default). If `--pod` is specified and the pod shares the UTS namespace (default) the pod's hostname will be used.
#### **--hostuser**=*name*
Add a user account to /etc/passwd from the host to the container. The Username
or UID must exist on the host system.
#### **--http-proxy**
By default proxy environment variables are passed into the container if set
for the Podman process. This can be disabled by setting the value to **false**.
The environment variables passed in include **http_proxy**,
**https_proxy**, **ftp_proxy**, **no_proxy**, and also the upper case versions of
those. This option is only needed when the host system must use a proxy but
the container should not use any proxy. Proxy environment variables specified
for the container in any other way will override the values that would have
been passed through from the host. (Other ways to specify the proxy for the
container include passing the values with the **--env** flag, or hard coding the
proxy environment at container build time.) (This option is not available with the remote Podman client, including Mac and Windows (excluding WSL2) machines)
Defaults to **true**.
#### **--image-volume**, **builtin-volume**=**bind**|**tmpfs**|**ignore**
Tells Podman how to handle the builtin image volumes. Default is **bind**.
- **bind**: An anonymous named volume will be created and mounted into the container.
- **tmpfs**: The volume is mounted onto the container as a tmpfs, which allows the users to create
content that disappears when the container is stopped.
- **ignore**: All volumes are just ignored and no action is taken.
#### **--init**
Run an init inside the container that forwards signals and reaps processes.
#### **--init-path**=*path*
Path to the container-init binary.
#### **--interactive**, **-i**
When set to **true**, keep stdin open even if not attached. The default is **false**.
#### **--ip**=*ipv4*
Specify a static IPv4 address for the container, for example **10.88.64.128**.
This option can only be used if the container is joined to only a single network - i.e., **--network=network-name** is used at most once -
and if the container is not joining another container's network namespace via **--network=container:_id_**.
The address must be within the network's IP address pool (default **10.88.0.0/16**).
To specify multiple static IP addresses per container, set multiple networks using the **--network** option with a static IP address specified for each using the `ip` mode for that option.
#### **--ip6**=*ipv6*
Specify a static IPv6 address for the container, for example **fd46:db93:aa76:ac37::10**.
This option can only be used if the container is joined to only a single network - i.e., **--network=network-name** is used at most once -
and if the container is not joining another container's network namespace via **--network=container:_id_**.
The address must be within the network's IPv6 address pool.
To specify multiple static IPv6 addresses per container, set multiple networks using the **--network** option with a static IPv6 address specified for each using the `ip6` mode for that option.
#### **--ipc**=*mode*
Set the IPC namespace mode for a container. The default is to create
a private IPC namespace.
- "": Use Podman's default, defined in containers.conf.
- **container:**_id_: reuses another container shared memory, semaphores and message queues
- **host**: use the host shared memory,semaphores and message queues inside the container. Note: the host mode gives the container full access to local shared memory and is therefore considered insecure.
- **none**: private IPC namespace, with /dev/shm not mounted.
- **ns:**_path_: path to an IPC namespace to join.
- **private**: private IPC namespace.
= **shareable**: private IPC namespace with a possibility to share it with other containers.
#### **--label**, **-l**=*key*=*value*
Add metadata to a container.
#### **--label-file**=*file*
Read in a line-delimited file of labels.
#### **--link-local-ip**=*ip*
Not implemented.
#### **--log-driver**="*driver*"
Logging driver for the container. Currently available options are **k8s-file**, **journald**, **none** and **passthrough**, with **json-file** aliased to **k8s-file** for scripting compatibility. (Default journald)
The podman info command below will display the default log-driver for the system.
```
$ podman info --format '{{ .Host.LogDriver }}'
journald
```
The **passthrough** driver passes down the standard streams (stdin, stdout, stderr) to the
container. It is not allowed with the remote Podman client, including Mac and Windows (excluding WSL2) machines, and on a tty, since it is
vulnerable to attacks via TIOCSTI.
#### **--log-opt**=*name*=*value*
Logging driver specific options.
Set custom logging configuration. The following *name*s are supported:
**path**: specify a path to the log file
(e.g. **--log-opt path=/var/log/container/mycontainer.json**);
**max-size**: specify a max size of the log file
(e.g. **--log-opt max-size=10mb**);
**tag**: specify a custom log tag for the container
(e.g. **--log-opt tag="{{.ImageName}}"**.
This option is currently supported only by the **journald** log driver.
#### **--mac-address**=*address*
Container network interface MAC address (e.g. 92:d0:c6:0a:29:33)
This option can only be used if the container is joined to only a single network - i.e., **--network=_network-name_** is used at most once -
and if the container is not joining another container's network namespace via **--network=container:_id_**.
Remember that the MAC address in an Ethernet network must be unique.
The IPv6 link-local address will be based on the device's MAC address
according to RFC4862.
To specify multiple static MAC addresses per container, set multiple networks using the **--network** option with a static MAC address specified for each using the `mac` mode for that option.
#### **--memory**, **-m**=_number_[_unit_]
Memory limit. A _unit_ can be **b** (bytes), **k** (kilobytes), **m** (megabytes), or **g** (gigabytes).
Allows you to constrain the memory available to a container. If the host
supports swap memory, then the **-m** memory setting can be larger than physical
RAM. If a limit of 0 is specified (not using **-m**), the container's memory is
not limited. The actual limit may be rounded up to a multiple of the operating
system's page size (the value would be very large, that's millions of trillions).
#### **--memory-reservation**=_number_[_unit_]
Memory soft limit. A _unit_ can be **b** (bytes), **k** (kilobytes), **m** (megabytes), or **g** (gigabytes).
After setting memory reservation, when the system detects memory contention
or low memory, containers are forced to restrict their consumption to their
reservation. So you should always set the value below **--memory**, otherwise the
hard limit will take precedence. By default, memory reservation will be the same
as memory limit.
#### **--memory-swap**=_number_[_unit_]
A limit value equal to memory plus swap.
A _unit_ can be **b** (bytes), **k** (kilobytes), **m** (megabytes), or **g** (gigabytes).
Must be used with the **-m** (**--memory**) flag.
The argument value should always be larger than that of
**-m** (**--memory**) By default, it is set to double
the value of **--memory**.
Set _number_ to **-1** to enable unlimited swap.
#### **--memory-swappiness**=*number*
Tune a container's memory swappiness behavior. Accepts an integer between *0* and *100*.
This flag is not supported on cgroups V2 systems.
#### **--mount**=*type=TYPE,TYPE-SPECIFIC-OPTION[,...]*
Attach a filesystem mount to the container
Current supported mount TYPEs are **bind**, **volume**, **image**, **tmpfs** and **devpts**. <sup>[[1]](#Footnote1)</sup>
e.g.
type=bind,source=/path/on/host,destination=/path/in/container
type=bind,src=/path/on/host,dst=/path/in/container,relabel=shared
type=bind,src=/path/on/host,dst=/path/in/container,relabel=shared,U=true
type=volume,source=vol1,destination=/path/in/container,ro=true
type=tmpfs,tmpfs-size=512M,destination=/path/in/container
type=image,source=fedora,destination=/fedora-image,rw=true
type=devpts,destination=/dev/pts
Common Options:
· src, source: mount source spec for bind and volume. Mandatory for bind.
· dst, destination, target: mount destination spec.
Options specific to volume:
· ro, readonly: true or false (default).
. U, chown: true or false (default). Change recursively the owner and group of the source volume based on the UID and GID of the container.
· idmap: true or false (default). If specified, create an idmapped mount to the target user namespace in the container.
Options specific to image:
· rw, readwrite: true or false (default).
Options specific to bind:
· ro, readonly: true or false (default).
· bind-propagation: shared, slave, private, unbindable, rshared, rslave, runbindable, or rprivate(default). See also mount(2).
. bind-nonrecursive: do not setup a recursive bind mount. By default it is recursive.
. relabel: shared, private.
· idmap: true or false (default). If specified, create an idmapped mount to the target user namespace in the container.
. U, chown: true or false (default). Change recursively the owner and group of the source volume based on the UID and GID of the container.
Options specific to tmpfs:
· ro, readonly: true or false (default).
· tmpfs-size: Size of the tmpfs mount in bytes. Unlimited by default in Linux.
· tmpfs-mode: File mode of the tmpfs in octal. (e.g. 700 or 0700.) Defaults to 1777 in Linux.
· tmpcopyup: Enable copyup from the image directory at the same location to the tmpfs. Used by default.
· notmpcopyup: Disable copying files from the image to the tmpfs.
. U, chown: true or false (default). Change recursively the owner and group of the source volume based on the UID and GID of the container.
Options specific to devpts:
· uid: UID of the file owner (default 0).
· gid: GID of the file owner (default 0).
· mode: permission mask for the file (default 600).
· max: maximum number of PTYs (default 1048576).
#### **--name**=*name*
Assign a name to the container.
The operator can identify a container in three ways:
- UUID long identifier (“f78375b1c487e03c9438c729345e54db9d20cfa2ac1fc3494b6eb60872e74778”);
- UUID short identifier (“f78375b1c487”);
- Name (“jonah”).
Podman generates a UUID for each container, and if a name is not assigned
to the container with **--name** then it will generate a random
string name. The name is useful any place you need to identify a container.
This works for both background and foreground containers.
#### **--network**=*mode*, **--net**
Set the network mode for the container. Invalid if using **--dns**, **--dns-opt**, or **--dns-search** with **--network** set to **none** or **container:**_id_. If used together with **--pod**, the container will not join the pod's network namespace.
Valid _mode_ values are:
- **bridge[:OPTIONS,...]**: Create a network stack on the default bridge. This is the default for rootfull containers. It is possible to specify these additional options:
- **alias=name**: Add network-scoped alias for the container.
- **ip=IPv4**: Specify a static ipv4 address for this container.
- **ip=IPv6**: Specify a static ipv6 address for this container.
- **mac=MAC**: Specify a static mac address for this container.
- **interface_name**: Specify a name for the created network interface inside the container.
For example to set a static ipv4 address and a static mac address, use `--network bridge:ip=10.88.0.10,mac=44:33:22:11:00:99`.
- \<network name or ID\>[:OPTIONS,...]: Connect to a user-defined network; this is the network name or ID from a network created by **[podman network create](podman-network-create.1.md)**. Using the network name implies the bridge network mode. It is possible to specify the same options described under the bridge mode above. You can use the **--network** option multiple times to specify additional networks.
- **none**: Create a network namespace for the container but do not configure network interfaces for it, thus the container has no network connectivity.
- **container:**_id_: Reuse another container's network stack.
- **host**: Do not create a network namespace, the container will use the host's network. Note: The host mode gives the container full access to local system services such as D-bus and is therefore considered insecure.
- **ns:**_path_: Path to a network namespace to join.
- **private**: Create a new namespace for the container. This will use the **bridge** mode for rootfull containers and **slirp4netns** for rootless ones.
- **slirp4netns[:OPTIONS,...]**: use **slirp4netns**(1) to create a user network stack. This is the default for rootless containers. It is possible to specify these additional options:
- **allow_host_loopback=true|false**: Allow the slirp4netns to reach the host loopback IP (`10.0.2.2`, which is added to `/etc/hosts` as `host.containers.internal` for your convenience). Default is false.
- **mtu=MTU**: Specify the MTU to use for this network. (Default is `65520`).
- **cidr=CIDR**: Specify ip range to use for this network. (Default is `10.0.2.0/24`).
- **enable_ipv6=true|false**: Enable IPv6. Default is false. (Required for `outbound_addr6`).
- **outbound_addr=INTERFACE**: Specify the outbound interface slirp should bind to (ipv4 traffic only).
- **outbound_addr=IPv4**: Specify the outbound ipv4 address slirp should bind to.
- **outbound_addr6=INTERFACE**: Specify the outbound interface slirp should bind to (ipv6 traffic only).
- **outbound_addr6=IPv6**: Specify the outbound ipv6 address slirp should bind to.
- **port_handler=rootlesskit**: Use rootlesskit for port forwarding. Default.
Note: Rootlesskit changes the source IP address of incoming packets to an IP address in the container network namespace, usually `10.0.2.100`. If your application requires the real source IP address, e.g. web server logs, use the slirp4netns port handler. The rootlesskit port handler is also used for rootless containers when connected to user-defined networks.
- **port_handler=slirp4netns**: Use the slirp4netns port forwarding, it is slower than rootlesskit but preserves the correct source IP address. This port handler cannot be used for user-defined networks.
#### **--network-alias**=*alias*
Add a network-scoped alias for the container, setting the alias for all networks that the container joins. To set a name only for a specific network, use the alias option as described under the **--network** option.
Network aliases work only with the bridge networking mode. This option can be specified multiple times.
NOTE: A container will only have access to aliases on the first network that it joins. This is a limitation that will be removed in a later release.
#### **--no-healthcheck**
Disable any defined healthchecks for container.
#### **--no-hosts**
Do not create _/etc/hosts_ for the container.
By default, Podman will manage _/etc/hosts_, adding the container's own IP address and any hosts from **--add-host**.
#### **--no-hosts** disables this, and the image's _/etc/hosts_ will be preserved unmodified.
This option conflicts with **--add-host**.
#### **--oom-kill-disable**
Whether to disable OOM Killer for the container or not.
This flag is not supported on cgroups V2 systems.
#### **--oom-score-adj**=*num*
Tune the host's OOM preferences for containers (accepts values from **-1000** to **1000**).
#### **--os**=*OS*
Override the OS, defaults to hosts, of the image to be pulled. For example, `windows`.
#### **--passwd**
Allow Podman to add entries to /etc/passwd and /etc/group when used in conjunction with the --user option.
This is used to override the Podman provided user setup in favor of entrypoint configurations such as libnss-extrausers.
#### **--passwd-entry**=*ENTRY*
Customize the entry that is written to the `/etc/passwd` file within the container when `--passwd` is used.
The variables $USERNAME, $UID, $GID, $NAME, $HOME are automatically replaced with their value at runtime.
#### **--personality**=*persona*
Personality sets the execution domain via Linux personality(2).
#### **--pid**=*mode*
Set the PID namespace mode for the container.
The default is to create a private PID namespace for the container.
- **container:**_id_: join another container's PID namespace;
- **host**: use the host's PID namespace for the container. Note the host mode gives the container full access to local PID and is therefore considered insecure;
- **private**: create a new namespace for the container (default)
- **ns:**_path_: join the specified PID namespace.
#### **--pidfile**=*path*
When the pidfile location is specified, the container process' PID will be written to the pidfile. (This option is not available with the remote Podman client, including Mac and Windows (excluding WSL2) machines)
If the pidfile option is not specified, the container process' PID will be written to /run/containers/storage/${storage-driver}-containers/$CID/userdata/pidfile.
After the container is started, the location for the pidfile can be discovered with the following `podman inspect` command:
$ podman inspect --format '{{ .PidFile }}' $CID
/run/containers/storage/${storage-driver}-containers/$CID/userdata/pidfile
#### **--pids-limit**=*limit*
Tune the container's pids limit. Set to **-1** to have unlimited pids for the container. The default is **4096** on systems that support "pids" cgroup controller.
#### **--platform**=*OS/ARCH*
Specify the platform for selecting the image. (Conflicts with --arch and --os)
The `--platform` option can be used to override the current architecture and operating system.
#### **--pod**=*name*
Run container in an existing pod. If you want Podman to make the pod for you, prefix the pod name with **new:**.
To make a pod with more granular options, use the **podman pod create** command before creating a container.
If a container is run with a pod, and the pod has an infra-container, the infra-container will be started before the container is.
#### **--pod-id-file**=*path*
Run container in an existing pod and read the pod's ID from the specified file.
If a container is run within a pod, and the pod has an infra-container, the infra-container will be started before the container is.
#### **--preserve-fds**=*N*
Pass down to the process N additional file descriptors (in addition to 0, 1, 2).
The total FDs will be 3+N. (This option is not available with the remote Podman client, including Mac and Windows (excluding WSL2) machines)
#### **--privileged**
Give extended privileges to this container. The default is **false**.
By default, Podman containers are unprivileged (**=false**) and cannot, for
example, modify parts of the operating system. This is because by default a
container is only allowed limited access to devices. A "privileged" container
is given the same access to devices as the user launching the container.
A privileged container turns off the security features that isolate the
container from the host. Dropped Capabilities, limited devices, read-only mount
points, Apparmor/SELinux separation, and Seccomp filters are all disabled.
Rootless containers cannot have more privileges than the account that launched them.
#### **--publish**, **-p**=_ip_:_hostPort_:_containerPort_ | _ip_::_containerPort_ | _hostPort_:_containerPort_ | _containerPort_
Publish a container's port, or range of ports, to the host.
Both hostPort and containerPort can be specified as a range of ports.
When specifying ranges for both, the number of container ports in the range must match the number of host ports in the range.
If host IP is set to 0.0.0.0 or not set at all, the port will be bound on all IPs on the host.
Host port does not have to be specified (e.g. `podman run -p 127.0.0.1::80`).
If it is not, the container port will be randomly assigned a port on the host.
Use **podman port** to see the actual mapping: **podman port $CONTAINER $CONTAINERPORT**.
**Note:** if a container will be run within a pod, it is not necessary to publish the port for
the containers in the pod. The port must only be published by the pod itself. Pod network
stacks act like the network stack on the host - you have a variety of containers in the pod,
and programs in the container, all sharing a single interface and IP address, and
associated ports. If one container binds to a port, no other container can use that port
within the pod while it is in use. Containers in the pod can also communicate over localhost
by having one container bind to localhost in the pod, and another connect to that port.
#### **--publish-all**, **-P**
Publish all exposed ports to random ports on the host interfaces. The default is **false**.
When set to **true**, publish all exposed ports to the host interfaces. The
default is **false**. If the operator uses **-P** (or **-p**) then Podman will make the
exposed port accessible on the host and the ports will be available to any
client that can reach the host.
When using this option, Podman will bind any exposed port to a random port on the host
within an ephemeral port range defined by */proc/sys/net/ipv4/ip_local_port_range*.
To find the mapping between the host ports and the exposed ports, use **podman port**.
#### **--pull**=**always**|**missing**|**never**
Pull image before running. The default is **missing**.
- **missing**: attempt to pull the latest image from the registries listed in registries.conf if a local image does not exist.Raise an error if the image is not in any listed registry and is not present locally.
- **always**: Pull the image from the first registry it is found in as listed in registries.conf. Raise an error if not found in the registries, even if the image is present locally.
- **never**: do not pull the image from the registry, use only the local version. Raise an error if the image is not present locally.
#### **--quiet**, **-q**
Suppress output information when pulling images
#### **--read-only**
Mount the container's root filesystem as read only.
By default a container will have its root filesystem writable allowing processes
to write files anywhere. By specifying the **--read-only** flag, the container will have
its root filesystem mounted as read only prohibiting any writes.
#### **--read-only-tmpfs**
If container is running in **--read-only** mode, then mount a read-write tmpfs on _/run_, _/tmp_, and _/var/tmp_. The default is **true**.
#### **--replace**
If another container with the same name already exists, replace and remove it. The default is **false**.
#### **--requires**=**container**
Specify one or more requirements.
A requirement is a dependency container that will be started before this container.
Containers can be specified by name or ID, with multiple containers being separated by commas.
#### **--restart**=*policy*
Restart policy to follow when containers exit.
Restart policy will not take effect if a container is stopped via the **podman kill** or **podman stop** commands.
Valid _policy_ values are:
- `no` : Do not restart containers on exit
- `on-failure[:max_retries]` : Restart containers when they exit with a non-zero exit code, retrying indefinitely or until the optional *max_retries* count is hit
- `always` : Restart containers when they exit, regardless of status, retrying indefinitely
- `unless-stopped` : Identical to **always**
Please note that restart will not restart containers after a system reboot.
If this functionality is required in your environment, you can invoke Podman from a **systemd.unit**(5) file, or create an init script for whichever init system is in use.
To generate systemd unit files, please see **podman generate systemd**.
#### **--rm**
Automatically remove the container when it exits. The default is **false**.
#### **--rmi**
After exit of the container, remove the image unless another
container is using it. The default is *false*.
#### **--rootfs**
If specified, the first argument refers to an exploded container on the file system.
This is useful to run a container without requiring any image management, the rootfs
of the container is assumed to be managed externally.
`Overlay Rootfs Mounts`
The `:O` flag tells Podman to mount the directory from the rootfs path as
storage using the `overlay file system`. The container processes
can modify content within the mount point which is stored in the
container storage in a separate directory. In overlay terms, the source
directory will be the lower, and the container storage directory will be the
upper. Modifications to the mount point are destroyed when the container
finishes executing, similar to a tmpfs mount point being unmounted.
Note: On **SELinux** systems, the rootfs needs the correct label, which is by default
**unconfined_u:object_r:container_file_t**.
#### **--sdnotify**=**container**|**conmon**|**ignore**
Determines how to use the NOTIFY_SOCKET, as passed with systemd and Type=notify.
Default is **container**, which means allow the OCI runtime to proxy the socket into the
container to receive ready notification. Podman will set the MAINPID to conmon's pid.
The **conmon** option sets MAINPID to conmon's pid, and sends READY when the container
has started. The socket is never passed to the runtime or the container.
The **ignore** option removes NOTIFY_SOCKET from the environment for itself and child processes,
for the case where some other process above Podman uses NOTIFY_SOCKET and Podman should not use it.
#### **--seccomp-policy**=*policy*
Specify the policy to select the seccomp profile. If set to *image*, Podman will look for a "io.containers.seccomp.profile" label in the container-image config and use its value as a seccomp profile. Otherwise, Podman will follow the *default* policy by applying the default profile unless specified otherwise via *--security-opt seccomp* as described below.
Note that this feature is experimental and may change in the future.
#### **--secret**=*secret*[,opt=opt ...]
Give the container access to a secret. Can be specified multiple times.
A secret is a blob of sensitive data which a container needs at runtime but