-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpl_curve.py
394 lines (309 loc) · 11.1 KB
/
pl_curve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
#!/usr/bin/env python3
"""
A program for graphing the evenness of bacterial communities using
Pareto-Lorenz curves of the relative abundance of a set of T-RFs against the
cumulative abundance of each T-RF. It also calculates the gini-coefficient of
these.
This implements the method described in the following papers:
https://www.nature.com/articles/ismej2010100
"Possible interactions between bacterial diversity, microbial activity and
supraglacial hydrology of cryoconite holes in Svalbard" by
Arwyn Edwards, Alexandre M Anesio, Sara M Rassner, Birgit Sattler,
Bryn Hubbard, William T Perkins, Michael Young & Gareth W Griffith
in The ISME Journal volume 5, pages 150-160 (2011)
and
https://doi.org/10.3389/fmicb.2016.00956
"Can the Bacterial Community of a High Arctic Glacier Surface Escape Viral
Control?" by Sara M. E. Rassner, Alexandre M. Anesio, Susan E. Girdwood,
Katherina Hell, Jarishma K. Gokul, David E. Whitworth and Arwyn Edwards
in Frontiers in Microbiology 21 June 2016
@author: Colin Sauze
"""
import sys
import argparse
import math
import pandas as pd
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# note matplotlib.use('Agg') has to be done before any other matplotlib related
# stuff including importing pyplot. This sets the backend to make a PNG file.
def calculate_gini(data):
'''calculates the gini coefficient.
This code is based on:
stackoverflow.com/questions/39512260/calculating-gini-coefficient-in-python-numpy/39513799
Parameters
----------
data
the list of data to calculate the gini coefficient on
Returns
-------
float64
The gini coefficient for this data
'''
# (Warning: This is a concise implementation, but it is O(n**2)
# in time and memory, where n = len(x). *Don't* pass in huge
# samples!)
# don't attempt to compute an empty list, just return NaN instead
if data.size == 0:
return math.nan
# Mean absolute difference
mad = np.abs(np.subtract.outer(np.array(data), np.array(data))).mean()
# Relative mean absolute difference
rmad = mad / np.mean(data)
# Gini coefficient
gini = 0.5 * rmad
return gini
def check_columns(dataframe):
'''
Checks all columns in the data frame sum to 1
Parameters
----------
dataframe
The data frame to check
Returns
-------
Bool
False if a column doesn't sum to 1, True if they all do
'''
for col in dataframe.columns:
total = sum(dataframe.loc[:, col])
# print(col, "total=", total)
if total < 0.9999 or total > 1.0001:
# print("Error column ", col, "doesn't sum to 1.0")
return False
return True
def remove_zeros(dataframe):
'''
Removes all rows which contain only zeros
Parameters
----------
dataframe
The data frame to check
Returns
-------
pandas.core.frame.DataFrame
The dataframe with all zero rows removed
'''
for row_index in dataframe.index:
total = sum(dataframe.loc[row_index])
if total == 0:
# print("removing bin", row_index, "as its empty")
dataframe = dataframe.drop(row_index)
return dataframe
def sort_bins(dataframe):
'''
Sort each bin by its relative abundance
Parameters
----------
dataframe
The data frame to check
Returns
-------
list
A list of dataframes, each dataframe contains a single sample
'''
# split each column into its own dataframe
samples = []
for col in dataframe.columns:
# sort the bins in descending order, convert result to a new dataframe
data = dataframe.loc[:, col].sort_values(ascending=False).to_frame()
samples.append(data)
return samples
def calculate_cumulative_relative_abundance(samples):
'''
calculates cumulative relative abundance
Parameters
----------
samples
a list of dataframes
Returns
-------
list
a new list of dataframes, each one will have an additional column
'cuml rel abund' with the cumulative relative abundance.
'''
samples2 = []
for sample in samples:
cum_rel_abund = []
# calculate cumulative relative abundance and cumulative prop trfs
for i in range(0, len(sample)):
if i > 0:
cum_rel_abund.append(sample.iloc[i][0] + cum_rel_abund[i - 1])
else:
cum_rel_abund.append(sample.iloc[i][0])
sample['Cum Rel Abund'] = cum_rel_abund
samples2.append(sample)
return samples2
def calculate_cumulative_prop_trf(samples):
'''
calculates cumulative prop trf
Parameters
----------
samples
A list of dataframes
Returns
-------
list
A new list of dataframes, each one will have an additional column
'cum prop trfs' with the cumulative prop trfs.
'''
samples2 = []
for sample in samples:
cum_prop_trfs = []
# calculate cumulative prop trfs
for i in range(0, len(sample)):
cum_prop_trfs.append((i + 1) / len(sample))
sample['Cum Prop TRFs'] = cum_prop_trfs
samples2.append(sample)
return samples2
def remove_cumulative_abundance_over_one(samples):
'''
deletes all but the first item where cumulative abundance is greater than 1
Parameters
----------
samples
A list of dataframes each dataframe should have 3 columns. One with the
name of the step, Cum Prop TRFs and Cum Rel Abund.
Returns
-------
list
A modified version of the list with all but the first row where
cumulative abundance is greater than 1.
'''
samples2 = []
# get each sample in turn
for col in samples:
found = False
new_frame = col
# go through each row and check for values over 1
for row_index in col.index:
val = col["Cum Rel Abund"][row_index]
# if we've already found the first row with a value of 1,
# then start removing rows
if found:
# remove the row and save the resulting frame back to new_frame
new_frame = new_frame.drop(row_index)
# look for values over 1
# floating point representation means it might not be exactly 1
elif val > 0.999999:
found = True
# add the new reduced dataframe to a list to replace samples
samples2.append(new_frame)
return samples2
def make_graph(samples, filename):
'''
Makes a graph
Parameters
----------
samples
A list of dataframes, each dataframe should contain 3 columns one with
the name of the step, Cum Prop TRFs and Cum Rel Abund.
filename
Name of the file to save the graph to
'''
# the - prefix means a line will drawn
# see https://matplotlib.org/api/markers_api.html for a list of markers
markerlist = ["-+", "-,", "-o", "-*", "-.", "-^", "-<", "->", "-v"]
# the list of markers to use, must be longer or equal to number of steps
# check it really is
# assert len(markerlist) >= len(samples)
# counter for going through the makerlist
i = 0
# make graph
for col in samples:
# get the title of current sample from the heading of its 1st column
title = col.columns[0]
plt.xlim(0, 1.0)
plt.ylim(0, 1.05)
plt.annotate("",
xy=(0, 0), xycoords='data',
xytext=(1, 1), textcoords='data',
arrowprops=dict(arrowstyle="-",
connectionstyle="arc3,rad=0."), )
# plot cumulative prop trfs vs cumulative relative abundance
# plt.plot(col.loc[:, 'Cum Prop TRFs'], col.loc[:, 'Cum Rel Abund'],
# markerlist[i], label=title)
plt.plot(col.loc[:, 'Cum Prop TRFs'], col.loc[:, 'Cum Rel Abund'],
label=title)
plt.ylabel("Cumulative Relative Abundance")
plt.xlabel("Cumulative Prop TRF")
plt.grid()
plt.legend()
plt.savefig(filename)
i = i + 1
def make_gini_file(samples, gini_file):
'''
Calculates the Gini coefficients and saves them to a TSV file
Parameters
----------
samples
A list of dataframes, each dataframe should contain 3 columns one with
the name of the step, Cum Prop TRFs and Cum Rel Abund.
gini_file
Name of the file to save the gini coefficient data to
'''
titles = []
for col in samples:
titles.append(col.columns[0])
# make an empty data frame for the gini coefficients
gini_dataframe = pd.DataFrame(columns=['Gini', 'Corrected Gini', 'n'],
index=titles)
# make graph
for col in samples:
# get the title of current sample from the heading of its 1st column
title = col.columns[0]
# calculate gini coefficient and corrected gini (g * (n/n-1))
gini = calculate_gini(col.iloc[:, 0])
corrected_gini = gini * (len(col) / (len(col) - 1))
# add gini coefficients into a dataframe for saving the result
# 24-March-2021: limit to a certain precision for csv exporting.
gini_dataframe.loc[title, 'Gini'] = "{:f}".format(gini)
gini_dataframe.loc[title, 'Corrected Gini'] = "{:f}".format(corrected_gini)
gini_dataframe.loc[title, 'n'] = len(col)
print(gini_dataframe)
# save the gini coefficients to a file
gini_dataframe.to_csv(gini_file, sep='\t')
def run(input_file, graph_file, output_file):
'''
runs everything
**** change this function to alter filenames ****
Parameters
----------
input_file
The file to read data from
graph_file
The file to save the graph as
output_file
The file to save the data to
'''
dataframe = pd.read_csv(input_file, delimiter='\t', index_col='Bin')
# check all columns sum to 1, if so proceed and calculate/graph
if check_columns(dataframe):
dataframe = remove_zeros(dataframe)
samples = sort_bins(dataframe)
samples = calculate_cumulative_relative_abundance(samples)
samples = remove_cumulative_abundance_over_one(samples)
samples = calculate_cumulative_prop_trf(samples)
make_graph(samples, graph_file)
make_gini_file(samples, output_file)
return samples
else:
sys.stderr.write("Error: columns don't sum to 1\n")
sys.exit(1)
if __name__ == "__main__":
# parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument('inputfile')
parser.add_argument('-g', '--graph', help='Graph file name',
default='graph.png', required=False)
parser.add_argument('-o', '--output', help='Output data file name',
required=False)
args = parser.parse_args()
if args.output is None:
args.output = args.inputfile + ".output.tsv"
print("Input file:", args.inputfile)
print("Output file:", args.output)
print("Graph file", args.graph)
sample_data = run(args.inputfile, args.graph, args.output)