-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgen_data.py
84 lines (63 loc) · 2.96 KB
/
gen_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import codecs
import torch
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from transformers import BertTokenizer
from preprocessing import convert_label_to_id,demoji
class MyDataset(Dataset):
def __init__(self, train_data, label2idx, tokenizer, max_length=512):
super(MyDataset, self).__init__()
self.train_data = train_data
self.label2idx = label2idx
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.train_data)
def __getitem__(self, item):
data = self.train_data[item][0]
label = self.train_data[item][1]
lang_id = self.train_data[item][-1]
tokenizer_result = self.tokenizer(data, add_special_tokens=True, \
max_length=self.max_length, \
padding="max_length", \
return_tensors='pt')
input_ids = tokenizer_result["input_ids"].squeeze(0)
#print(input_ids.shape)
attention_mask = tokenizer_result["attention_mask"].squeeze(0)
#token_type_ids = tokenizer_result["token_type_ids"].squeeze(0)
if input_ids.shape[-1] != self.max_length:
input_ids = input_ids[:self.max_length]
if attention_mask.shape[-1] != self.max_length:
attention_mask = attention_mask[:self.max_length]
#if token_type_ids.shape[-1] != self.max_length:
# token_type_ids = token_type_ids[:self.max_length]
label = self.label2idx[label]
token_type_ids=0
return input_ids, attention_mask, token_type_ids,label, lang_id
class MyTestDataset(Dataset):
def __init__(self, train_data, label2idx, tokenizer, max_length=512):
super(MyTestDataset, self).__init__()
self.train_data = train_data
self.label2idx = label2idx
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.train_data)
def __getitem__(self, item):
data_origin = self.train_data[item][0]
data = demoji(data_origin)
label = self.train_data[item][1]
label = self.label2idx[label]
tokenizer_result = self.tokenizer.encode_plus(data, add_special_tokens=True, \
max_length=self.max_length, \
padding="max_length", \
return_tensors='pt')
input_ids = tokenizer_result["input_ids"].squeeze(0)
attention_mask = tokenizer_result["attention_mask"].squeeze(0)
if input_ids.shape[-1] != self.max_length:
input_ids = input_ids[:self.max_length]
if attention_mask.shape[-1] != self.max_length:
attention_mask = attention_mask[:self.max_length]
token_type_ids=0
return input_ids, attention_mask, token_type_ids, label, data_origin