forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_util.py
524 lines (481 loc) · 24.3 KB
/
eval_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Common functions for repeatedly evaluating a checkpoint.
"""
import copy
import logging
import os
import time
import numpy as np
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import object_detection_evaluation
from object_detection.utils import visualization_utils as vis_utils
slim = tf.contrib.slim
def write_metrics(metrics, global_step, summary_dir):
"""Write metrics to a summary directory.
Args:
metrics: A dictionary containing metric names and values.
global_step: Global step at which the metrics are computed.
summary_dir: Directory to write tensorflow summaries to.
"""
logging.info('Writing metrics to tf summary.')
summary_writer = tf.summary.FileWriter(summary_dir)
for key in sorted(metrics):
summary = tf.Summary(value=[
tf.Summary.Value(tag=key, simple_value=metrics[key]),
])
summary_writer.add_summary(summary, global_step)
logging.info('%s: %f', key, metrics[key])
summary_writer.close()
logging.info('Metrics written to tf summary.')
def evaluate_detection_results_pascal_voc(result_lists,
categories,
label_id_offset=0,
iou_thres=0.5,
corloc_summary=False):
"""Computes Pascal VOC detection metrics given groundtruth and detections.
This function computes Pascal VOC metrics. This function by default
takes detections and groundtruth boxes encoded in result_lists and writes
evaluation results to tf summaries which can be viewed on tensorboard.
Args:
result_lists: a dictionary holding lists of groundtruth and detection
data corresponding to each image being evaluated. The following keys
are required:
'image_id': a list of string ids
'detection_boxes': a list of float32 numpy arrays of shape [N, 4]
'detection_scores': a list of float32 numpy arrays of shape [N]
'detection_classes': a list of int32 numpy arrays of shape [N]
'groundtruth_boxes': a list of float32 numpy arrays of shape [M, 4]
'groundtruth_classes': a list of int32 numpy arrays of shape [M]
and the remaining fields below are optional:
'difficult': a list of boolean arrays of shape [M] indicating the
difficulty of groundtruth boxes. Some datasets like PASCAL VOC provide
this information and it is used to remove difficult examples from eval
in order to not penalize the models on them.
Note that it is okay to have additional fields in result_lists --- they
are simply ignored.
categories: a list of dictionaries representing all possible categories.
Each dict in this list has the following keys:
'id': (required) an integer id uniquely identifying this category
'name': (required) string representing category name
e.g., 'cat', 'dog', 'pizza'
label_id_offset: an integer offset for the label space.
iou_thres: float determining the IoU threshold at which a box is considered
correct. Defaults to the standard 0.5.
corloc_summary: boolean. If True, also outputs CorLoc metrics.
Returns:
A dictionary of metric names to scalar values.
Raises:
ValueError: if the set of keys in result_lists is not a superset of the
expected list of keys. Unexpected keys are ignored.
ValueError: if the lists in result_lists have inconsistent sizes.
"""
# check for expected keys in result_lists
expected_keys = [
'detection_boxes', 'detection_scores', 'detection_classes', 'image_id'
]
expected_keys += ['groundtruth_boxes', 'groundtruth_classes']
if not set(expected_keys).issubset(set(result_lists.keys())):
raise ValueError('result_lists does not have expected key set.')
num_results = len(result_lists[expected_keys[0]])
for key in expected_keys:
if len(result_lists[key]) != num_results:
raise ValueError('Inconsistent list sizes in result_lists')
# Pascal VOC evaluator assumes foreground index starts from zero.
categories = copy.deepcopy(categories)
for idx in range(len(categories)):
categories[idx]['id'] -= label_id_offset
# num_classes (maybe encoded as categories)
num_classes = max([cat['id'] for cat in categories]) + 1
logging.info('Computing Pascal VOC metrics on results.')
if all(image_id.isdigit() for image_id in result_lists['image_id']):
image_ids = [int(image_id) for image_id in result_lists['image_id']]
else:
image_ids = range(num_results)
evaluator = object_detection_evaluation.ObjectDetectionEvaluation(
num_classes, matching_iou_threshold=iou_thres)
difficult_lists = None
if 'difficult' in result_lists and result_lists['difficult']:
difficult_lists = result_lists['difficult']
for idx, image_id in enumerate(image_ids):
difficult = None
if difficult_lists is not None and difficult_lists[idx].size:
difficult = difficult_lists[idx].astype(np.bool)
evaluator.add_single_ground_truth_image_info(
image_id, result_lists['groundtruth_boxes'][idx],
result_lists['groundtruth_classes'][idx] - label_id_offset,
difficult)
evaluator.add_single_detected_image_info(
image_id, result_lists['detection_boxes'][idx],
result_lists['detection_scores'][idx],
result_lists['detection_classes'][idx] - label_id_offset)
per_class_ap, mean_ap, _, _, per_class_corloc, mean_corloc = (
evaluator.evaluate())
metrics = {'Precision/mAP@{}IOU'.format(iou_thres): mean_ap}
category_index = label_map_util.create_category_index(categories)
for idx in range(per_class_ap.size):
if idx in category_index:
display_name = ('PerformanceByCategory/mAP@{}IOU/{}'
.format(iou_thres, category_index[idx]['name']))
metrics[display_name] = per_class_ap[idx]
if corloc_summary:
metrics['CorLoc/CorLoc@{}IOU'.format(iou_thres)] = mean_corloc
for idx in range(per_class_corloc.size):
if idx in category_index:
display_name = (
'PerformanceByCategory/CorLoc@{}IOU/{}'.format(
iou_thres, category_index[idx]['name']))
metrics[display_name] = per_class_corloc[idx]
return metrics
# TODO: Add tests.
def visualize_detection_results(result_dict,
tag,
global_step,
categories,
summary_dir='',
export_dir='',
agnostic_mode=False,
show_groundtruth=False,
min_score_thresh=.5,
max_num_predictions=20):
"""Visualizes detection results and writes visualizations to image summaries.
This function visualizes an image with its detected bounding boxes and writes
to image summaries which can be viewed on tensorboard. It optionally also
writes images to a directory. In the case of missing entry in the label map,
unknown class name in the visualization is shown as "N/A".
Args:
result_dict: a dictionary holding groundtruth and detection
data corresponding to each image being evaluated. The following keys
are required:
'original_image': a numpy array representing the image with shape
[1, height, width, 3]
'detection_boxes': a numpy array of shape [N, 4]
'detection_scores': a numpy array of shape [N]
'detection_classes': a numpy array of shape [N]
The following keys are optional:
'groundtruth_boxes': a numpy array of shape [N, 4]
'groundtruth_keypoints': a numpy array of shape [N, num_keypoints, 2]
Detections are assumed to be provided in decreasing order of score and for
display, and we assume that scores are probabilities between 0 and 1.
tag: tensorboard tag (string) to associate with image.
global_step: global step at which the visualization are generated.
categories: a list of dictionaries representing all possible categories.
Each dict in this list has the following keys:
'id': (required) an integer id uniquely identifying this category
'name': (required) string representing category name
e.g., 'cat', 'dog', 'pizza'
'supercategory': (optional) string representing the supercategory
e.g., 'animal', 'vehicle', 'food', etc
summary_dir: the output directory to which the image summaries are written.
export_dir: the output directory to which images are written. If this is
empty (default), then images are not exported.
agnostic_mode: boolean (default: False) controlling whether to evaluate in
class-agnostic mode or not.
show_groundtruth: boolean (default: False) controlling whether to show
groundtruth boxes in addition to detected boxes
min_score_thresh: minimum score threshold for a box to be visualized
max_num_predictions: maximum number of detections to visualize
Raises:
ValueError: if result_dict does not contain the expected keys (i.e.,
'original_image', 'detection_boxes', 'detection_scores',
'detection_classes')
"""
if not set([
'original_image', 'detection_boxes', 'detection_scores',
'detection_classes'
]).issubset(set(result_dict.keys())):
raise ValueError('result_dict does not contain all expected keys.')
if show_groundtruth and 'groundtruth_boxes' not in result_dict:
raise ValueError('If show_groundtruth is enabled, result_dict must contain '
'groundtruth_boxes.')
logging.info('Creating detection visualizations.')
category_index = label_map_util.create_category_index(categories)
image = np.squeeze(result_dict['original_image'], axis=0)
detection_boxes = result_dict['detection_boxes']
detection_scores = result_dict['detection_scores']
detection_classes = np.int32((result_dict['detection_classes']))
detection_keypoints = result_dict.get('detection_keypoints', None)
detection_masks = result_dict.get('detection_masks', None)
# Plot groundtruth underneath detections
if show_groundtruth:
groundtruth_boxes = result_dict['groundtruth_boxes']
groundtruth_keypoints = result_dict.get('groundtruth_keypoints', None)
vis_utils.visualize_boxes_and_labels_on_image_array(
image,
groundtruth_boxes,
None,
None,
category_index,
keypoints=groundtruth_keypoints,
use_normalized_coordinates=False,
max_boxes_to_draw=None)
vis_utils.visualize_boxes_and_labels_on_image_array(
image,
detection_boxes,
detection_classes,
detection_scores,
category_index,
instance_masks=detection_masks,
keypoints=detection_keypoints,
use_normalized_coordinates=False,
max_boxes_to_draw=max_num_predictions,
min_score_thresh=min_score_thresh,
agnostic_mode=agnostic_mode)
if export_dir:
export_path = os.path.join(export_dir, 'export-{}.png'.format(tag))
vis_utils.save_image_array_as_png(image, export_path)
summary = tf.Summary(value=[
tf.Summary.Value(tag=tag, image=tf.Summary.Image(
encoded_image_string=vis_utils.encode_image_array_as_png_str(
image)))
])
summary_writer = tf.summary.FileWriter(summary_dir)
summary_writer.add_summary(summary, global_step)
summary_writer.close()
logging.info('Detection visualizations written to summary with tag %s.', tag)
# TODO: Add tests.
# TODO: Have an argument called `aggregated_processor_tensor_keys` that contains
# a whitelist of tensors used by the `aggregated_result_processor` instead of a
# blacklist. This will prevent us from inadvertently adding any evaluated
# tensors into the `results_list` data structure that are not needed by
# `aggregated_result_preprocessor`.
def run_checkpoint_once(tensor_dict,
update_op,
summary_dir,
aggregated_result_processor=None,
batch_processor=None,
checkpoint_dirs=None,
variables_to_restore=None,
restore_fn=None,
num_batches=1,
master='',
save_graph=False,
save_graph_dir='',
metric_names_to_values=None,
keys_to_exclude_from_results=()):
"""Evaluates both python metrics and tensorflow slim metrics.
Python metrics are processed in batch by the aggregated_result_processor,
while tensorflow slim metrics statistics are computed by running
metric_names_to_updates tensors and aggregated using metric_names_to_values
tensor.
Args:
tensor_dict: a dictionary holding tensors representing a batch of detections
and corresponding groundtruth annotations.
update_op: a tensorflow update op that will run for each batch along with
the tensors in tensor_dict..
summary_dir: a directory to write metrics summaries.
aggregated_result_processor: a function taking one arguments:
1. result_lists: a dictionary with keys matching those in tensor_dict
and corresponding values being the list of results for each tensor
in tensor_dict. The length of each such list is num_batches.
batch_processor: a function taking four arguments:
1. tensor_dict: the same tensor_dict that is passed in as the first
argument to this function.
2. sess: a tensorflow session
3. batch_index: an integer representing the index of the batch amongst
all batches
4. update_op: a tensorflow update op that will run for each batch.
and returns result_dict, a dictionary of results for that batch.
By default, batch_processor is None, which defaults to running:
return sess.run(tensor_dict)
To skip an image, it suffices to return an empty dictionary in place of
result_dict.
checkpoint_dirs: list of directories to load into an EnsembleModel. If it
has only one directory, EnsembleModel will not be used -- a DetectionModel
will be instantiated directly. Not used if restore_fn is set.
variables_to_restore: None, or a dictionary mapping variable names found in
a checkpoint to model variables. The dictionary would normally be
generated by creating a tf.train.ExponentialMovingAverage object and
calling its variables_to_restore() method. Not used if restore_fn is set.
restore_fn: None, or a function that takes a tf.Session object and correctly
restores all necessary variables from the correct checkpoint file. If
None, attempts to restore from the first directory in checkpoint_dirs.
num_batches: the number of batches to use for evaluation.
master: the location of the Tensorflow session.
save_graph: whether or not the Tensorflow graph is stored as a pbtxt file.
save_graph_dir: where to store the Tensorflow graph on disk. If save_graph
is True this must be non-empty.
metric_names_to_values: A dictionary containing metric names to tensors
which will be evaluated after processing all batches
of [tensor_dict, update_op]. If any metrics depend on statistics computed
during each batch ensure that `update_op` tensor has a control dependency
on the update ops that compute the statistics.
keys_to_exclude_from_results: keys in tensor_dict that will be excluded
from results_list. Note that the tensors corresponding to these keys will
still be evaluated for each batch, but won't be added to results_list.
Raises:
ValueError: if restore_fn is None and checkpoint_dirs doesn't have at least
one element.
ValueError: if save_graph is True and save_graph_dir is not defined.
"""
if save_graph and not save_graph_dir:
raise ValueError('`save_graph_dir` must be defined.')
sess = tf.Session(master, graph=tf.get_default_graph())
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
if restore_fn:
restore_fn(sess)
else:
if not checkpoint_dirs:
raise ValueError('`checkpoint_dirs` must have at least one entry.')
checkpoint_file = tf.train.latest_checkpoint(checkpoint_dirs[0])
saver = tf.train.Saver(variables_to_restore)
saver.restore(sess, checkpoint_file)
if save_graph:
tf.train.write_graph(sess.graph_def, save_graph_dir, 'eval.pbtxt')
valid_keys = list(set(tensor_dict.keys()) - set(keys_to_exclude_from_results))
result_lists = {key: [] for key in valid_keys}
counters = {'skipped': 0, 'success': 0}
other_metrics = None
with tf.contrib.slim.queues.QueueRunners(sess):
try:
for batch in range(int(num_batches)):
if (batch + 1) % 100 == 0:
logging.info('Running eval ops batch %d/%d', batch + 1, num_batches)
if not batch_processor:
try:
(result_dict, _) = sess.run([tensor_dict, update_op])
counters['success'] += 1
except tf.errors.InvalidArgumentError:
logging.info('Skipping image')
counters['skipped'] += 1
result_dict = {}
else:
result_dict = batch_processor(
tensor_dict, sess, batch, counters, update_op)
for key in result_dict:
if key in valid_keys:
result_lists[key].append(result_dict[key])
if metric_names_to_values is not None:
other_metrics = sess.run(metric_names_to_values)
logging.info('Running eval batches done.')
except tf.errors.OutOfRangeError:
logging.info('Done evaluating -- epoch limit reached')
finally:
# When done, ask the threads to stop.
metrics = aggregated_result_processor(result_lists)
if other_metrics is not None:
metrics.update(other_metrics)
global_step = tf.train.global_step(sess, slim.get_global_step())
write_metrics(metrics, global_step, summary_dir)
logging.info('# success: %d', counters['success'])
logging.info('# skipped: %d', counters['skipped'])
sess.close()
# TODO: Add tests.
def repeated_checkpoint_run(tensor_dict,
update_op,
summary_dir,
aggregated_result_processor=None,
batch_processor=None,
checkpoint_dirs=None,
variables_to_restore=None,
restore_fn=None,
num_batches=1,
eval_interval_secs=120,
max_number_of_evaluations=None,
master='',
save_graph=False,
save_graph_dir='',
metric_names_to_values=None,
keys_to_exclude_from_results=()):
"""Periodically evaluates desired tensors using checkpoint_dirs or restore_fn.
This function repeatedly loads a checkpoint and evaluates a desired
set of tensors (provided by tensor_dict) and hands the resulting numpy
arrays to a function result_processor which can be used to further
process/save/visualize the results.
Args:
tensor_dict: a dictionary holding tensors representing a batch of detections
and corresponding groundtruth annotations.
update_op: a tensorflow update op that will run for each batch along with
the tensors in tensor_dict.
summary_dir: a directory to write metrics summaries.
aggregated_result_processor: a function taking one argument:
1. result_lists: a dictionary with keys matching those in tensor_dict
and corresponding values being the list of results for each tensor
in tensor_dict. The length of each such list is num_batches.
batch_processor: a function taking three arguments:
1. tensor_dict: the same tensor_dict that is passed in as the first
argument to this function.
2. sess: a tensorflow session
3. batch_index: an integer representing the index of the batch amongst
all batches
4. update_op: a tensorflow update op that will run for each batch.
and returns result_dict, a dictionary of results for that batch.
By default, batch_processor is None, which defaults to running:
return sess.run(tensor_dict)
checkpoint_dirs: list of directories to load into a DetectionModel or an
EnsembleModel if restore_fn isn't set. Also used to determine when to run
next evaluation. Must have at least one element.
variables_to_restore: None, or a dictionary mapping variable names found in
a checkpoint to model variables. The dictionary would normally be
generated by creating a tf.train.ExponentialMovingAverage object and
calling its variables_to_restore() method. Not used if restore_fn is set.
restore_fn: a function that takes a tf.Session object and correctly restores
all necessary variables from the correct checkpoint file.
num_batches: the number of batches to use for evaluation.
eval_interval_secs: the number of seconds between each evaluation run.
max_number_of_evaluations: the max number of iterations of the evaluation.
If the value is left as None the evaluation continues indefinitely.
master: the location of the Tensorflow session.
save_graph: whether or not the Tensorflow graph is saved as a pbtxt file.
save_graph_dir: where to save on disk the Tensorflow graph. If store_graph
is True this must be non-empty.
metric_names_to_values: A dictionary containing metric names to tensors
which will be evaluated after processing all batches
of [tensor_dict, update_op]. If any metrics depend on statistics computed
during each batch ensure that `update_op` tensor has a control dependency
on the update ops that compute the statistics.
keys_to_exclude_from_results: keys in tensor_dict that will be excluded
from results_list. Note that the tensors corresponding to these keys will
still be evaluated for each batch, but won't be added to results_list.
Raises:
ValueError: if max_num_of_evaluations is not None or a positive number.
ValueError: if checkpoint_dirs doesn't have at least one element.
"""
if max_number_of_evaluations and max_number_of_evaluations <= 0:
raise ValueError(
'`number_of_steps` must be either None or a positive number.')
if not checkpoint_dirs:
raise ValueError('`checkpoint_dirs` must have at least one entry.')
last_evaluated_model_path = None
number_of_evaluations = 0
while True:
start = time.time()
logging.info('Starting evaluation at ' + time.strftime('%Y-%m-%d-%H:%M:%S',
time.gmtime()))
model_path = tf.train.latest_checkpoint(checkpoint_dirs[0])
if not model_path:
logging.info('No model found in %s. Will try again in %d seconds',
checkpoint_dirs[0], eval_interval_secs)
elif model_path == last_evaluated_model_path:
logging.info('Found already evaluated checkpoint. Will try again in %d '
'seconds', eval_interval_secs)
else:
last_evaluated_model_path = model_path
run_checkpoint_once(tensor_dict, update_op, summary_dir,
aggregated_result_processor,
batch_processor, checkpoint_dirs,
variables_to_restore, restore_fn, num_batches, master,
save_graph, save_graph_dir, metric_names_to_values,
keys_to_exclude_from_results)
number_of_evaluations += 1
if (max_number_of_evaluations and
number_of_evaluations >= max_number_of_evaluations):
logging.info('Finished evaluation!')
break
time_to_next_eval = start + eval_interval_secs - time.time()
if time_to_next_eval > 0:
time.sleep(time_to_next_eval)