
Contracts vulnerabilities

Vulnerabilities list

Contracts vulnerabilities 1
Vulnerabilities list 1
Involved contracts and level of the bugs 1
Vulnerabilities 1

1. depositServiceDonationsETH function (services state) 1
2. depositServiceDonationsETH function (OLAS incentives) 2
3. Checkpoint function 3
4. getLastIDF function 3
5. Treasury Fund Token Management 4

Involved contracts and level of the bugs
The present document describes issues affecting Tokenomics contracts

Vulnerabilities

1. depositServiceDonationsETH function (services state)

Severity: Low

The following function is implemented in the Treasury contract:

function depositServiceDonationsETH(uint256[] memory serviceIds, uint256[]
memory amounts) external payable

This service donating function calls another function from the Tokenomics contract that
ultimately results in calling the internal function _trackServiceDonations(). The latter one
checks whether agent and component Ids of each of the passed service Id exist, and if
not, reverts with the ServiceNeverDeployed() error. The error arises from the fact that the
service was never deployed, and its underlying component and agent Ids were not
assigned (the assignment of underlying component and/or agent Ids to a service happens
during the deployment of the service itself).



However, after a specific service is deployed at least once and then terminated, it can be
updated and re-deployed again. In particular, the service can be updated with a different
set of agent Ids, making the donation distribution setup invalid for the following reason. If
this updated service receives a donation before it is re-deployed, the donation will be
distributed between its old component and agent Ids owners and not the new ones.

Therefore, donating to an updated service before its redeployment can affect the correct
distribution of rewards in the Tokenomics contract. We recommend not to donate when a
service is not in the Deployed or TerminatedBonded state (e.g. any service with
serviceIds[i] not in Deployed or TerminatedBonded state must not be passed as input
parameters to the function depositServiceDonationsETH). The state of the service can
be easily checked via the ServiceRegistry contract view function getService(uint256

serviceId).

2. depositServiceDonationsETH function (OLAS incentives)

Severity: Informative

The following function is implemented in the Treasury contract:

function depositServiceDonationsETH(uint256[] memory serviceIds, uint256[]
memory amounts) external payable

When a DAO member holding the veOLAS threshold1 uses this method to donate ETH to a
certain service, the owners of the agents and components referenced in such a service
are entitled to receive a share of the donation and OLAS tokens arising from inflation.

While the current approach encourages service registration and donations through the
utilization of all available OLAS each epoch, this might be utilized in a counter-intended
way by malicious donators. If a donator owns all the underlying components and agents,
meets the sufficient veOLAS requirement, and makes only a small donation to their
service, they could accrue a significant number of OLAS tokens through inflation top-ups
at a low cost. This behavior may yield considerable gains initially but becomes less
profitable as more major players utilize the protocol, leading to more donations being
distributed among multiple services and stakeholders.

1 Currently, the threshold for participation is set at 10000 veOLAS, and adjustments to this
threshold can be made through a governance voting process.



3. Checkpoint function

Severity: Informative

The following function is implemented in the Tokenomics contract:

function checkpoint() external returns (bool)

The purpose of this function is to record the global data and update tokenomics
parameters and/or fractions when changeTokenomicsParameters() and/or
changeIncentiveFractions() methods are called.

When the epoch following the settled epoch has a year change, the function performs an
incorrect calculation of top-ups for the event emit. Specifically, the emitted top-ups value
is overwritten with the one calculated for the next epoch. This issue is considered
informative because the amount of top-ups to be allocated (and further minted) is
calculated correctly; the problem lies only with the emitted amount.
By addressing this issue, the Tokenomics contract will provide accurate information
regarding the allocation of top-ups.

4. getLastIDF function
Severity: Informative

The following function is implemented in the Tokenomics contract and used in
GenericBondCalculator contract:

function getLastIDF() external view returns (uint256 idf)

This function retrieves the inverse discount factor (IDF) from the epoch just prior to the
latest checkpoint, expressed as a multiple of 1e18. The calculation of IDF pertains to the
current epoch and draws from the outcomes of the previous epoch. It's worth noting that
if the function were modified to output getIDF(epochCounter) instead of
getIDF(epochCounter-1), the getLastIDF() function would have more prominently
represented the performance results from the most recent epoch.
In absence of redeploying a new contract, we recall that getLastIDF gives more
prominently information associated with performance in the second to latest settled
epoch, hence we suggest using getIDF(epochCounter) to check the performance
prominently represented the results from the most recent settled epoch.



5. Treasury Fund Token Management

Severity: Informative

By design, within the Treasury contract, there is currently no mechanism in place to
facilitate the removal of tokens other than ETH that have not been added to the Treasury
through the treasury depositTokenForOLAS() method.

Therefore, we strongly recommend refraining from transferring funds directly to the
Treasury contract that does not adhere to the established tokenomics logic. This
precautionary measure will help prevent potential freezing of funds within the Treasury
contract


