
Contracts vulnerabilities

Vulnerabilities list:

Contracts vulnerabilities 1
Vulnerabilities list: 1
Involved contracts and level of the bugs 1
Vulnerabilities 1

1. tokenURI function 1
2. create function 2
3. update function (zero bonds) 2
4. update function (replacing agent Ids) 3
5. drain function 4
6. GnosisSafeSameAddressMultisig create function (Testnets) 4

Involved contracts and level of the bugs
The present document aims to point out some vulnerabilities in the autonolas-registry
contracts.

Vulnerabilities

1. tokenURI function

Severity: Low

The following function is implemented in the GenericRegistry contract:

function tokenURI(uint256 unitId) public view virtual override
returns (string memory)

This function is defined by the EIP�721 standard. The standard states that the function is
supposed to throw if unitId is not a valid NFT. However, in our contract, the function does
not revert if the unitId is out of bounds, but just returns the value of a string with the
defined prefix and 64 zeros derived from a zero bytes32 value.

https://github.com/valory-xyz/autonolas-registries
https://eips.ethereum.org/EIPS/eip-721


Therefore, we recommend checking the return value of this view function, and if the last
64 symbols are zero, consider it to be an invalid NFT. Also one might use the exists()
function to preliminary check if the requested NFT Id exists.

2. create function

Severity: Low

The following function is implemented in the GnosisSafeMultisig contract:

function create(address[] memory owners, uint256 threshold, bytes
memory data) external returns (address multisig)

This function creates a Safe service multisig when the service is deployed. Since
Autonolas protocol follows an optimistic design, none of the fields for the Safe multisig
creation are restricted. This way, the service owner might pass the payload field as they
feel fit for the purposes of the service multisig. That said, any possible malicious behavior
can also be embedded in the payload value.

In the event of the intended malicious multisig creation, the Autonolas protocol is not
affected, however, accounts interacting with the corresponding service might bear
eventual consequences of such a setup.

We strongly recommend not abusing the payload field of the service multisig when
deploying the service to perform any malicious actions. If the payload field affects a
service in any way, an eventual service ranking implemented in tokenomics, is going to
signal about the intended service misbehavior.

3. update function (zero bonds)

Severity: Low

The following function is implemented in the ServiceRegistry and ServiceRegistryL2
contracts:

function update(address serviceOwner, bytes32 configHash, uint32[]
memory agentIds, uint32 threshold, uint256 serviceId) external
returns (bool success)



This function allows updating a service in a pre-registration state in a CRUD way. E.g. if
there is a need to remove agentIds[i] from the canonical agents making up the
service, then it is sufficient to call this function and update it in such a way that a
corresponding slots field is set to zero, i.e., agentParam[i].slots=0, also adjusting
the threshold.

When an agent slot is non-zero, and an operator can register an agent instance for that
slot, it is necessary that the corresponding agent bond is non-zero. In the current
implementation, there is no check for agent bonds to be different from zero if the
corresponding agent slot is non-zero. This vulnerability would enable an operator to
register an agent instance without the corresponding security bond. Hence, the operator
would not be affected by any possible slashing condition if the total operator bond is
equal to zero.

This vulnerability is addressed for the ServiceRegistry contract by adding the zero-value
check on the service manager level. Specifically, serviceManagerToken serving as a new
service manager contract handles the check before calling the original serviceRegistry’s
update() method. See
https://github.com/valory-xyz/autonolas-registries/blob/main/test/ServiceManagerToken.j
s#L297�L303 for a test proving that the issue is resolved.

In absence of redeploying a new manager for the ServiceRegistryL2 contract, we
recommend that service owners assign a zero-value to agent bonds only if the
corresponding agent slot is zero.

4. update function (replacing agent Ids)

Severity: Low

The following function is implemented in the ServiceRegistry contract:

function update(address serviceOwner, bytes32 configHash, uint32[]
memory agentIds, uint32 threshold, uint256 serviceId) external
returns (bool success)

As described earlier, this function allows updating a service in a pre-registration state in a
CRUD way. However, considering that there is no possible direct damage to the protocol
and to save on transaction gas costs, the function is implemented via an optimistic
approach.

https://github.com/valory-xyz/autonolas-registries/blob/main/contracts/ServiceManagerToken.sol
https://github.com/valory-xyz/autonolas-registries/blob/main/contracts/ServiceManagerToken.sol#L148
https://github.com/valory-xyz/autonolas-registries/blob/main/test/ServiceManagerToken.js#L297-L303
https://github.com/valory-xyz/autonolas-registries/blob/main/test/ServiceManagerToken.js#L297-L303


Specifically, the service owner might not specify that some of the agent Ids of the
previous setup must be taken out of the system (by setting corresponding slots variable
to zero). This means that operators are able to register agent instances specifying
non-declared service agent Ids (as those were deliberately left in the corresponding map
from the previous setup). This might lead to deploying the service on agent Ids from the
previous setup, declaring that they actually run on current ones (as retrieved via the
getService() view function).

We strongly recommend not abusing the update() function in order to deploy the service
to perform any malicious actions by using undeclared agent Ids. This behavior is easily
spotted off-chain, and an eventual service ranking is going to signal about the intended
service misbehavior for the rest of the service livespan.

5. drain function

Severity: Informative

The following function is implemented in the ServiceRegistryTokenUtility contract:

function drain(address token) external returns (uint256 amount)

The primary purpose of this function is to allow the removal of tokens, other than ETH,
from the contract.

By design, the current setup of the Treasury contract, there is currently no mechanism in
place to facilitate the removal of the chain native tokens. Therefore, we strongly advise
against assigning ServiceRegistryTokenUtility drainer role to the Treasury contract.

We strongly advise against initiating a vote to set Treasury as drainer in the
ServiceRegistryTokenUtility.

6. GnosisSafeSameAddressMultisig create function (Testnets)

Severity: Informative - only Testnets

The following function is implemented in the GnosisSafeSameAddressMultisig contract
deployed on Goerl, Mumbai, and Chiado testnets:
function create(address[] memory owners, uint256 threshold,bytes
memory data) external returns (address multisig)



This function is used when a service is being redeployed with an existing multisig
address.
The primary objective of this function is to retrieve multisig-related data from the
provided data. Subsequently, the function checks whether the owners and threshold

values provided as arguments match those associated with the provided multisig-related
data. This verification process is essential because it ensures that the multisig
configuration remains consistent.

It's important to note that this function does not validate whether the provided address is
genuinely a Gnosis Safe multisig contract. This opens the possibility for a service owner
to create a potentially malicious multisig contract. They can achieve this by implementing
the getOwner and getThreshold methods and assigning them to the values of their
rogue multisig, thereby bypassing proper Gnosis Safe multisig validation.

In conclusion, it's essential to exercise caution when using this function. Only utilize it in
scenarios where you are absolutely certain that the multisig address used in a service
redeployment corresponds to a Gnosis Safe multisig contract.


