
Contracts vulnerabilities

Vulnerabilities list

Contracts vulnerabilities 1
Vulnerabilities list 1
Involved contracts and level of the bugs 1
Vulnerabilities 1

1. getPastVotes vulnerability 1
2. balanceOfAt vulnerability 2
3. _checkpoint vulnerability 3
4. createLockFor vulnerability 5
5. totalSupplyLockedAtT vulnerability 6
6. getPastTotalSupply vulnerability 6

Involved contracts and level of the bugs
The present document aims to point out some vulnerabilities in the contracts veOLAS,
buOLAS. Some of these vulnerabilities may lead to critical1 bugs.

Vulnerabilities

1. getPastVotes vulnerability

Acknowledgments: This vulnerability was discovered thanks to howd4ys who kindly
reported it by participating in the Autonolas Immunefi Bug Program.

Severity: Low2

In the veOLAS contract, the following function is implemented:

function getPastVotes(address account, uint256 blockNumber) public
view override returns (uint256 balance)

This function returns the voting power of the address account at a specific
blockNumber.

2 Since no manipulation of governance voting can currently happen, this vulnerability identifies a
smart contract that fails to deliver promised returns but doesn’t lose value.

1 The level of the bug is assigned by following the Immunefi classification

https://github.com/howd4ys
https://immunefi.com/bounty/autonolas/
https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-2/

This function has an incorrect behavior when the input blockNumber is smaller than the
block number n where a lock was first created for the account.

Specifically, denoting by T the timestamp of the input blockNumber and T1 the
timestamp of the block n, the incorrect behavior arises because of the subtraction
veOLAS.sol#L680 that becomes an addition when blockTime=T is smaller than
uPoint.ts=T1. Denoting by T2 the endTime for the locking created for the account at
time T1, the calculation in veOLAS.sol#L680 provides the following value for the bias
bias=slope*(T2-T). However, the latter bias is bigger than the correct value for the
bias at the timestamp T1 which should be slope*(T2-T1).

We recommend using as an input parameter of the function a blockNumber bigger than
the block number n where a lock was first created for the account.

Note that the function getPastVotes(account,blockNumber) is used to weigh the
voting power of users that cast a vote on a governance proposal. Whether there is a
governance proposal and a user creates a lock after the beginning and no later than the
end of the voting period, due to this vulnerability of
getPastVotes(account,blockNumber), the user would be able to cast a voting power
bigger than its correct one. Note that the manipulation of the voting power has an upper
bound due to the fact that there is a limited number of blocks in a voting period and that
any locks last at least one week. Nevertheless, currently, there is no possibility of creating
new locks, so this issue cannot affect any governance voting.

The wrapped veOLAS (wveOLAS) contract wraps original veOLAS view functions and
serves as mitigating measures to address this issue.

2. balanceOfAt vulnerability

Severity: Low3

In the veOLAS contract, the following function is implemented:

function balanceOfAt(address account, uint256 blockNumber) external
view returns (uint256 balance)

This function returns the actual balance of the address account at a specific
blockNumber.

3 This function is not currently used in any of the Autonolas on-chain contracts, thus this vulnerability
identifies a smart contract that fails to deliver promised returns but doesn’t lose value.

https://github.com/valory-xyz/autonolas-governance/blob/main/contracts/veOLAS.sol#L680
https://github.com/valory-xyz/autonolas-governance/blob/main/contracts/veOLAS.sol#L680

This function has an incorrect behavior when the input blockNumber is smaller than the
block number n where a lock was first created for the account.

As for the previous vulnerability explanation (getPastVotes()), the function
balanceOfAt()uses the same binary search algorithm followed by identical value
extraction, and thus returns a very first balance of a locked point, whereas it should return
zero.

We recommend using blockNumber input parameter value bigger than the block number
n where a lock was first created for the account.

The wrapped veOLAS (wveOLAS) contract wraps original veOLAS view functions and
serves as mitigating measures to address this issue.

3. _checkpoint vulnerability

Severity: Medium4

In the veOLAS contract, the following function is implemented:

function _checkpoint(address account, LockedBalance memory oldLocked,
LockedBalance memory newLocked, uint128 curSupply) internal

According to the article on medium.com, the declaration of a memory struct lastPoint and
its assignment to another memory struct leads to the pointer of the initial struct, and not
its deep copy, that can be observed in line 219. This leads to the incorrect calculations of
history points for the periods of time when there was no checkpoint() function called for
more than a week.

However, there is more to the specified issue that leads to following observations:

● If the contract has not created a user point during a specific week, then when
finally created, the internal checkpoint function writes a point in that week with the
block number equal to the last created point but with a timestamp equal to the end
time of the week that has just passed. If no points were created for several weeks,
then the internal checkpoint function recreates a point for each week of inactivity
having the block number equal to the last created user point and the timestamp
equal to the end time of the end of each skipped week.

4 When voting via veOLAS, the incorrect value is returned as a read-only value, thus this could
be declared as a Low severity. However, if there are consequences due to incorrect voting
failure, then it is a potential damage to the DAO members, and then the severity is Medium.

https://medium.com/@gr_gred/how-i-found-2-bugs-after-2-audits-on-smart-contracts-with-20-mil-3a23209b463d
https://etherscan.io/address/0x7e01a500805f8a52fad229b3015ad130a332b7b3#code#F1#L219

● Even if the checkpoint is called once a week, two points are created: one point
with a block number equal to the last created point but with a timestamp equal to
the end time of the week, and another one with an actual block number and
corresponding timestamp of the checkpoint call.

This behavior leads to the creation of supply points that have an incorrect block number
detached from the actual timestamp. This further leads to the scenario where all supply
points during the weeks of inactivity of veOLAS have the same block numbers as the first
point that triggered the checkpoint(). In other words, all the supply points that were
recreated at the end time of every week will not be correctly recovered during the block
number search (via the block number itself or the timestamp). Any historic lookups
between two supply points (not including points themselves) that were created
immediately before and immediately later the exact end of a week or that were created
with more than a week of inactivity will have an incorrect block number equal to the one
of a first point.

This might potentially affect the voting functionality. If the voting was performed during
the time that had to account for the inactivity weeks, immediately after the very last point
before the end time of a week, or immediately after an eventful point was created at a the
end time of a week, the weighted total supply (the overall number of votes) in the
function getPastTotalSupply() might return incorrect values (depending on the first point
with the same block number found via a binary search).

In the absence of deploying new contracts, we recommend running the analogue of the
cron scheduler / service that checks for the veOLAS activity during the week, and if there
was none, trigger a checkpoint() function call immediately before and immediately after
end time of each week. This way, all the supply points will be updated throughout the
time of the contract and, we increase the likelihood of having voting periods starting
immediately after and before effective points with different blocks timestamps (not in the
weekly time divider). As the protocol becomes more active, this issue will be minimized by
the participation of DAO members.

To minimize a possible impact, the service triggering the checkpoint() call must be
executed as close to the whole week of unix time as possible. Specifically, if the
checkpoint is called at least once a week, a possible deviation in the total voting supply
can only happen if the vote starts after the very last point of week (not in the weekly time
divider) or before the very first point of a week. The supply deviation factor depends on
the time difference between the very last weekly point (not in the weekly end divider) and
the very first point after the weekly end time divider point.

Therefore, calling checkpoints as closer to the end and the beginning of the week of unix
time as possible the supply deviation can be minimized. A probabilistic analysis of how
likely such a scenario can happen is out of the scope of this document. However, despite
its likelihood, it is worth mentioning that, even in such a scenario, there is no certainty
that the wrong point will be picked by the binary search and ultimately there is no
certainty that the issue is going to affect the expected result.

4. createLockFor vulnerability
Severity: Medium

In veOLAS and buOLAS contracts, the following function is implemented:

function createLockFor(address account, uint256 amount, uint256
unlockTime) external

This function allows anyone, even a smart contract, to create a lock for a third-party
account. If the third-party account has already a locked amount the call will be reverted.
If not and the OLAS amount provided as input is non-zero then a lock is created.
As a consequence, any third-party account can be forced into a long lock length (for a
maximum of 4 years for veOLAS and 10 years for buOLAS) by an attacker calling
`createLockFor` with a very small amount of OLAS (i.e. 1/10 ** 18) and a max lock length.
An attacker could use this to prevent locks over a given adversarially chosen interval by
front-running all locks in this manner. All accounts with an intent to lock for less than 4
years would be affected. We assign a low likelihood to this attack, as it is not
economically profitable for the attacker.

Indeed, the caller of the `createLockFor` function can lock for third-party users only by
using its own OLAS tokens. So the mintable OLAS tokens can be temporarily frozen only
with an attacker's extensive cost.
In the buOLAS contract, there is also an extra guardrail that can be considered. If the
attack has been discovered, it is possible to invoke a governance vote to revoke the
unvested OLAS of the third-party account that has been forced in a long lock into
buOLAS. If the governance approves the revoke, the third-party account can call the
buOLAS withdraw function, and all non-vested OLAS tokens will be burned. When the
withdrawal function is called less than one year after the attack, all the contract status
can return to their original status before the attack has been made.

5. totalSupplyLockedAtT vulnerability
Severity: Low

In the veOLAS contract, the following function is implemented:

function totalSupplyLockedAtT(uint256 ts) public view returns
(uint256)

The function is used solely by the totalSupplyLocked() function with the current
block.timestamp. By the original design, it is not intended to have a ts parameter
smaller than the current block.timestamp.

We recommend not to call this function for any external purposes. It is a view function
that is not currently used externally in any of Autonolas on-chain protocol contracts, and
thus does not affect any intended behavior.

The wrapped veOLAS (wveOLAS) contract wraps original veOLAS view functions and
serves as mitigating measures to address this issue.

6. getPastTotalSupply vulnerability
Severity: Low

In the veOLAS contract, the following function is implemented:

function getPastTotalSupply(uint256 blockNumber) external view
returns (uint256)

The function returns the voting power of a specified block number. However, by the
original implementation, the requested block number must be at least equal to the zero
supply point block number, or the block number of a contract deployment. Otherwise, the
function reverts instead of returning a zero value.

We recommend not to call this function with the input block number value less than a zero
supply point block number, since it is meaningless anyway as there must be no values
before the very first supply point is created in the contract.

.

