-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy path_mask.pyx
308 lines (282 loc) · 11.2 KB
/
_mask.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# distutils: language = c
# distutils: sources = ../common/maskApi.c
#**************************************************************************
# Microsoft COCO Toolbox. version 2.0
# Data, paper, and tutorials available at: http://mscoco.org/
# Code written by Piotr Dollar and Tsung-Yi Lin, 2015.
# Licensed under the Simplified BSD License [see coco/license.txt]
#**************************************************************************
__author__ = 'tsungyi'
import sys
PYTHON_VERSION = sys.version_info[0]
# import both Python-level and C-level symbols of Numpy
# the API uses Numpy to interface C and Python
import numpy as np
cimport numpy as np
from libc.stdlib cimport malloc, free
# intialized Numpy. must do.
np.import_array()
# import numpy C function
# we use PyArray_ENABLEFLAGS to make Numpy ndarray responsible to memoery management
cdef extern from "numpy/arrayobject.h":
void PyArray_ENABLEFLAGS(np.ndarray arr, int flags)
# Declare the prototype of the C functions in MaskApi.h
cdef extern from "maskApi.h":
ctypedef unsigned int uint
ctypedef unsigned long siz
ctypedef unsigned char byte
ctypedef double* BB
ctypedef struct RLE:
siz h,
siz w,
siz m,
uint* cnts,
void rlesInit( RLE **R, siz n )
void rleEncode( RLE *R, const byte *M, siz h, siz w, siz n )
void rleDecode( const RLE *R, byte *mask, siz n )
void rleMerge( const RLE *R, RLE *M, siz n, int intersect )
void rleArea( const RLE *R, siz n, uint *a )
void rleIou( RLE *dt, RLE *gt, siz m, siz n, byte *iscrowd, double *o )
void bbIou( BB dt, BB gt, siz m, siz n, byte *iscrowd, double *o )
void rleToBbox( const RLE *R, BB bb, siz n )
void rleFrBbox( RLE *R, const BB bb, siz h, siz w, siz n )
void rleFrPoly( RLE *R, const double *xy, siz k, siz h, siz w )
char* rleToString( const RLE *R )
void rleFrString( RLE *R, char *s, siz h, siz w )
# python class to wrap RLE array in C
# the class handles the memory allocation and deallocation
cdef class RLEs:
cdef RLE *_R
cdef siz _n
def __cinit__(self, siz n =0):
rlesInit(&self._R, n)
self._n = n
# free the RLE array here
def __dealloc__(self):
if self._R is not NULL:
for i in range(self._n):
free(self._R[i].cnts)
free(self._R)
def __getattr__(self, key):
if key == 'n':
return self._n
raise AttributeError(key)
# python class to wrap Mask array in C
# the class handles the memory allocation and deallocation
cdef class Masks:
cdef byte *_mask
cdef siz _h
cdef siz _w
cdef siz _n
def __cinit__(self, h, w, n):
self._mask = <byte*> malloc(h*w*n* sizeof(byte))
self._h = h
self._w = w
self._n = n
# def __dealloc__(self):
# the memory management of _mask has been passed to np.ndarray
# it doesn't need to be freed here
# called when passing into np.array() and return an np.ndarray in column-major order
def __array__(self):
cdef np.npy_intp shape[1]
shape[0] = <np.npy_intp> self._h*self._w*self._n
# Create a 1D array, and reshape it to fortran/Matlab column-major array
ndarray = np.PyArray_SimpleNewFromData(1, shape, np.NPY_UINT8, self._mask).reshape((self._h, self._w, self._n), order='F')
# The _mask allocated by Masks is now handled by ndarray
PyArray_ENABLEFLAGS(ndarray, np.NPY_OWNDATA)
return ndarray
# internal conversion from Python RLEs object to compressed RLE format
def _toString(RLEs Rs):
cdef siz n = Rs.n
cdef bytes py_string
cdef char* c_string
objs = []
for i in range(n):
c_string = rleToString( <RLE*> &Rs._R[i] )
py_string = c_string
objs.append({
'size': [Rs._R[i].h, Rs._R[i].w],
'counts': py_string
})
free(c_string)
return objs
# internal conversion from compressed RLE format to Python RLEs object
def _frString(rleObjs):
cdef siz n = len(rleObjs)
Rs = RLEs(n)
cdef bytes py_string
cdef char* c_string
for i, obj in enumerate(rleObjs):
if PYTHON_VERSION == 2:
py_string = str(obj['counts']).encode('utf8')
elif PYTHON_VERSION == 3:
py_string = str.encode(obj['counts']) if type(obj['counts']) == str else obj['counts']
else:
raise Exception('Python version must be 2 or 3')
c_string = py_string
rleFrString( <RLE*> &Rs._R[i], <char*> c_string, obj['size'][0], obj['size'][1] )
return Rs
# encode mask to RLEs objects
# list of RLE string can be generated by RLEs member function
def encode(np.ndarray[np.uint8_t, ndim=3, mode='fortran'] mask):
h, w, n = mask.shape[0], mask.shape[1], mask.shape[2]
cdef RLEs Rs = RLEs(n)
rleEncode(Rs._R,<byte*>mask.data,h,w,n)
objs = _toString(Rs)
return objs
# decode mask from compressed list of RLE string or RLEs object
def decode(rleObjs):
cdef RLEs Rs = _frString(rleObjs)
h, w, n = Rs._R[0].h, Rs._R[0].w, Rs._n
masks = Masks(h, w, n)
rleDecode(<RLE*>Rs._R, masks._mask, n);
return np.array(masks)
def merge(rleObjs, intersect=0):
cdef RLEs Rs = _frString(rleObjs)
cdef RLEs R = RLEs(1)
rleMerge(<RLE*>Rs._R, <RLE*> R._R, <siz> Rs._n, intersect)
obj = _toString(R)[0]
return obj
def area(rleObjs):
cdef RLEs Rs = _frString(rleObjs)
cdef uint* _a = <uint*> malloc(Rs._n* sizeof(uint))
rleArea(Rs._R, Rs._n, _a)
cdef np.npy_intp shape[1]
shape[0] = <np.npy_intp> Rs._n
a = np.array((Rs._n, ), dtype=np.uint8)
a = np.PyArray_SimpleNewFromData(1, shape, np.NPY_UINT32, _a)
PyArray_ENABLEFLAGS(a, np.NPY_OWNDATA)
return a
# iou computation. support function overload (RLEs-RLEs and bbox-bbox).
def iou( dt, gt, pyiscrowd ):
def _preproc(objs):
if len(objs) == 0:
return objs
if type(objs) == np.ndarray:
if len(objs.shape) == 1:
objs = objs.reshape((objs[0], 1))
# check if it's Nx4 bbox
if not len(objs.shape) == 2 or not objs.shape[1] == 4:
raise Exception('numpy ndarray input is only for *bounding boxes* and should have Nx4 dimension')
objs = objs.astype(np.double)
elif type(objs) == list:
# check if list is in box format and convert it to np.ndarray
isbox = np.all(np.array([(len(obj)==4) and ((type(obj)==list) or (type(obj)==np.ndarray)) for obj in objs]))
isrle = np.all(np.array([type(obj) == dict for obj in objs]))
if isbox:
objs = np.array(objs, dtype=np.double)
if len(objs.shape) == 1:
objs = objs.reshape((1,objs.shape[0]))
elif isrle:
objs = _frString(objs)
else:
raise Exception('list input can be bounding box (Nx4) or RLEs ([RLE])')
else:
raise Exception('unrecognized type. The following type: RLEs (rle), np.ndarray (box), and list (box) are supported.')
return objs
def _rleIou(RLEs dt, RLEs gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou):
rleIou( <RLE*> dt._R, <RLE*> gt._R, m, n, <byte*> iscrowd.data, <double*> _iou.data )
def _bbIou(np.ndarray[np.double_t, ndim=2] dt, np.ndarray[np.double_t, ndim=2] gt, np.ndarray[np.uint8_t, ndim=1] iscrowd, siz m, siz n, np.ndarray[np.double_t, ndim=1] _iou):
bbIou( <BB> dt.data, <BB> gt.data, m, n, <byte*> iscrowd.data, <double*>_iou.data )
def _len(obj):
cdef siz N = 0
if type(obj) == RLEs:
N = obj.n
elif len(obj)==0:
pass
elif type(obj) == np.ndarray:
N = obj.shape[0]
return N
# convert iscrowd to numpy array
cdef np.ndarray[np.uint8_t, ndim=1] iscrowd = np.array(pyiscrowd, dtype=np.uint8)
# simple type checking
cdef siz m, n
dt = _preproc(dt)
gt = _preproc(gt)
m = _len(dt)
n = _len(gt)
if m == 0 or n == 0:
return []
if not type(dt) == type(gt):
raise Exception('The dt and gt should have the same data type, either RLEs, list or np.ndarray')
# define local variables
cdef double* _iou = <double*> 0
cdef np.npy_intp shape[1]
# check type and assign iou function
if type(dt) == RLEs:
_iouFun = _rleIou
elif type(dt) == np.ndarray:
_iouFun = _bbIou
else:
raise Exception('input data type not allowed.')
_iou = <double*> malloc(m*n* sizeof(double))
iou = np.zeros((m*n, ), dtype=np.double)
shape[0] = <np.npy_intp> m*n
iou = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _iou)
PyArray_ENABLEFLAGS(iou, np.NPY_OWNDATA)
_iouFun(dt, gt, iscrowd, m, n, iou)
return iou.reshape((m,n), order='F')
def toBbox( rleObjs ):
cdef RLEs Rs = _frString(rleObjs)
cdef siz n = Rs.n
cdef BB _bb = <BB> malloc(4*n* sizeof(double))
rleToBbox( <const RLE*> Rs._R, _bb, n )
cdef np.npy_intp shape[1]
shape[0] = <np.npy_intp> 4*n
bb = np.array((1,4*n), dtype=np.double)
bb = np.PyArray_SimpleNewFromData(1, shape, np.NPY_DOUBLE, _bb).reshape((n, 4))
PyArray_ENABLEFLAGS(bb, np.NPY_OWNDATA)
return bb
def frBbox(np.ndarray[np.double_t, ndim=2] bb, siz h, siz w ):
cdef siz n = bb.shape[0]
Rs = RLEs(n)
rleFrBbox( <RLE*> Rs._R, <const BB> bb.data, h, w, n )
objs = _toString(Rs)
return objs
def frPoly( poly, siz h, siz w ):
cdef np.ndarray[np.double_t, ndim=1] np_poly
n = len(poly)
Rs = RLEs(n)
for i, p in enumerate(poly):
np_poly = np.array(p, dtype=np.double, order='F')
rleFrPoly( <RLE*>&Rs._R[i], <const double*> np_poly.data, int(len(p)/2), h, w )
objs = _toString(Rs)
return objs
def frUncompressedRLE(ucRles, siz h, siz w):
cdef np.ndarray[np.uint32_t, ndim=1] cnts
cdef RLE R
cdef uint *data
n = len(ucRles)
objs = []
for i in range(n):
Rs = RLEs(1)
cnts = np.array(ucRles[i]['counts'], dtype=np.uint32)
# time for malloc can be saved here but it's fine
data = <uint*> malloc(len(cnts)* sizeof(uint))
for j in range(len(cnts)):
data[j] = <uint> cnts[j]
R = RLE(ucRles[i]['size'][0], ucRles[i]['size'][1], len(cnts), <uint*> data)
Rs._R[0] = R
objs.append(_toString(Rs)[0])
return objs
def frPyObjects(pyobj, h, w):
# encode rle from a list of python objects
if type(pyobj) == np.ndarray:
objs = frBbox(pyobj, h, w)
elif type(pyobj) == list and len(pyobj[0]) == 4:
objs = frBbox(pyobj, h, w)
elif type(pyobj) == list and len(pyobj[0]) > 4:
objs = frPoly(pyobj, h, w)
elif type(pyobj) == list and type(pyobj[0]) == dict \
and 'counts' in pyobj[0] and 'size' in pyobj[0]:
objs = frUncompressedRLE(pyobj, h, w)
# encode rle from single python object
elif type(pyobj) == list and len(pyobj) == 4:
objs = frBbox([pyobj], h, w)[0]
elif type(pyobj) == list and len(pyobj) > 4:
objs = frPoly([pyobj], h, w)[0]
elif type(pyobj) == dict and 'counts' in pyobj and 'size' in pyobj:
objs = frUncompressedRLE([pyobj], h, w)[0]
else:
raise Exception('input type is not supported.')
return objs