-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathraft_transport.go
683 lines (624 loc) · 21.8 KB
/
raft_transport.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
// Copyright 2015 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package kvserver
import (
"bytes"
"context"
"fmt"
"net"
"sort"
"sync/atomic"
"time"
"unsafe"
"github.com/cockroachdb/cockroach/pkg/base"
"github.com/cockroachdb/cockroach/pkg/roachpb"
"github.com/cockroachdb/cockroach/pkg/rpc"
"github.com/cockroachdb/cockroach/pkg/rpc/nodedialer"
"github.com/cockroachdb/cockroach/pkg/settings/cluster"
"github.com/cockroachdb/cockroach/pkg/storage"
"github.com/cockroachdb/cockroach/pkg/util/log"
"github.com/cockroachdb/cockroach/pkg/util/stop"
"github.com/cockroachdb/cockroach/pkg/util/syncutil"
"github.com/cockroachdb/cockroach/pkg/util/timeutil"
"github.com/cockroachdb/errors"
"go.etcd.io/etcd/raft/v3/raftpb"
"google.golang.org/grpc"
)
const (
// Outgoing messages are queued per-node on a channel of this size.
//
// TODO(peter): The normal send buffer size is larger than we would like. It
// is a temporary patch for the issue discussed in #8630 where
// Store.HandleRaftRequest can block applying a preemptive snapshot for a
// long enough period of time that grpc flow control kicks in and messages
// are dropped on the sending side.
raftSendBufferSize = 10000
// When no message has been queued for this duration, the corresponding
// instance of processQueue will shut down.
//
// TODO(tamird): make culling of outbound streams more evented, so that we
// need not rely on this timeout to shut things down.
raftIdleTimeout = time.Minute
)
// RaftMessageResponseStream is the subset of the
// MultiRaft_RaftMessageServer interface that is needed for sending responses.
type RaftMessageResponseStream interface {
Context() context.Context
Send(*RaftMessageResponse) error
}
// lockedRaftMessageResponseStream is an implementation of
// RaftMessageResponseStream which provides support for concurrent calls to
// Send. Note that the default implementation of grpc.Stream for server
// responses (grpc.serverStream) is not safe for concurrent calls to Send.
type lockedRaftMessageResponseStream struct {
wrapped MultiRaft_RaftMessageBatchServer
sendMu syncutil.Mutex
}
func (s *lockedRaftMessageResponseStream) Context() context.Context {
return s.wrapped.Context()
}
func (s *lockedRaftMessageResponseStream) Send(resp *RaftMessageResponse) error {
s.sendMu.Lock()
defer s.sendMu.Unlock()
return s.wrapped.Send(resp)
}
func (s *lockedRaftMessageResponseStream) Recv() (*RaftMessageRequestBatch, error) {
// No need for lock. gRPC.Stream.RecvMsg is safe for concurrent use.
return s.wrapped.Recv()
}
// SnapshotResponseStream is the subset of the
// MultiRaft_RaftSnapshotServer interface that is needed for sending responses.
type SnapshotResponseStream interface {
Context() context.Context
Send(*SnapshotResponse) error
Recv() (*SnapshotRequest, error)
}
// RaftMessageHandler is the interface that must be implemented by
// arguments to RaftTransport.Listen.
type RaftMessageHandler interface {
// HandleRaftRequest is called for each incoming Raft message. The request is
// always processed asynchronously and the response is sent over respStream.
// If an error is encountered during asynchronous processing, it will be
// streamed back to the sender of the message as a RaftMessageResponse.
HandleRaftRequest(ctx context.Context, req *RaftMessageRequest,
respStream RaftMessageResponseStream) *roachpb.Error
// HandleRaftResponse is called for each raft response. Note that
// not all messages receive a response. An error is returned if and only if
// the underlying Raft connection should be closed.
HandleRaftResponse(context.Context, *RaftMessageResponse) error
// HandleSnapshot is called for each new incoming snapshot stream, after
// parsing the initial SnapshotRequest_Header on the stream.
HandleSnapshot(header *SnapshotRequest_Header, respStream SnapshotResponseStream) error
}
type raftTransportStats struct {
nodeID roachpb.NodeID
queue int
queueMax int32
clientSent int64
clientRecv int64
clientDropped int64
serverSent int64
serverRecv int64
}
type raftTransportStatsSlice []*raftTransportStats
func (s raftTransportStatsSlice) Len() int { return len(s) }
func (s raftTransportStatsSlice) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s raftTransportStatsSlice) Less(i, j int) bool { return s[i].nodeID < s[j].nodeID }
// RaftTransport handles the rpc messages for raft.
//
// The raft transport is asynchronous with respect to the caller, and
// internally multiplexes outbound messages. Internally, each message is
// queued on a per-destination queue before being asynchronously delivered.
//
// Callers are required to construct a RaftSender before being able to
// dispatch messages, and must provide an error handler which will be invoked
// asynchronously in the event that the recipient of any message closes its
// inbound RPC stream. This callback is asynchronous with respect to the
// outbound message which caused the remote to hang up; all that is known is
// which remote hung up.
type RaftTransport struct {
log.AmbientContext
st *cluster.Settings
stopper *stop.Stopper
queues [rpc.NumConnectionClasses]syncutil.IntMap // map[roachpb.NodeID]*chan *RaftMessageRequest
stats [rpc.NumConnectionClasses]syncutil.IntMap // map[roachpb.NodeID]*chan *RaftMessageRequest
dialer *nodedialer.Dialer
handlers syncutil.IntMap // map[roachpb.StoreID]*RaftMessageHandler
}
// NewDummyRaftTransport returns a dummy raft transport for use in tests which
// need a non-nil raft transport that need not function.
func NewDummyRaftTransport(st *cluster.Settings) *RaftTransport {
resolver := func(roachpb.NodeID) (net.Addr, error) {
return nil, errors.New("dummy resolver")
}
return NewRaftTransport(log.AmbientContext{Tracer: st.Tracer}, st,
nodedialer.New(nil, resolver), nil, nil)
}
// NewRaftTransport creates a new RaftTransport.
func NewRaftTransport(
ambient log.AmbientContext,
st *cluster.Settings,
dialer *nodedialer.Dialer,
grpcServer *grpc.Server,
stopper *stop.Stopper,
) *RaftTransport {
t := &RaftTransport{
AmbientContext: ambient,
st: st,
stopper: stopper,
dialer: dialer,
}
if grpcServer != nil {
RegisterMultiRaftServer(grpcServer, t)
}
// statsMap is used to associate a queue with its raftTransportStats.
statsMap := make(map[roachpb.NodeID]*raftTransportStats)
clearStatsMap := func() {
for k := range statsMap {
delete(statsMap, k)
}
}
if t.stopper != nil && log.V(1) {
ctx := t.AnnotateCtx(context.Background())
t.stopper.RunWorker(ctx, func(ctx context.Context) {
ticker := time.NewTicker(10 * time.Second)
defer ticker.Stop()
lastStats := make(map[roachpb.NodeID]raftTransportStats)
lastTime := timeutil.Now()
var stats raftTransportStatsSlice
for {
select {
case <-ticker.C:
stats = stats[:0]
getStats := func(k int64, v unsafe.Pointer) bool {
s := (*raftTransportStats)(v)
// Clear the queue length stat. Note that this field is only
// mutated by this goroutine.
s.queue = 0
stats = append(stats, s)
statsMap[roachpb.NodeID(k)] = s
return true
}
setQueueLength := func(k int64, v unsafe.Pointer) bool {
ch := *(*chan *RaftMessageRequest)(v)
if s, ok := statsMap[roachpb.NodeID(k)]; ok {
s.queue += len(ch)
}
return true
}
for c := range t.stats {
clearStatsMap()
t.stats[c].Range(getStats)
t.queues[c].Range(setQueueLength)
}
clearStatsMap() // no need to hold on to references to stats
now := timeutil.Now()
elapsed := now.Sub(lastTime).Seconds()
sort.Sort(stats)
var buf bytes.Buffer
// NB: The header is 80 characters which should display in a single
// line on most terminals.
fmt.Fprintf(&buf,
" qlen qmax qdropped client-sent client-recv server-sent server-recv\n")
for _, s := range stats {
last := lastStats[s.nodeID]
cur := raftTransportStats{
nodeID: s.nodeID,
queue: s.queue,
queueMax: atomic.LoadInt32(&s.queueMax),
clientDropped: atomic.LoadInt64(&s.clientDropped),
clientSent: atomic.LoadInt64(&s.clientSent),
clientRecv: atomic.LoadInt64(&s.clientRecv),
serverSent: atomic.LoadInt64(&s.serverSent),
serverRecv: atomic.LoadInt64(&s.serverRecv),
}
fmt.Fprintf(&buf, " %3d: %6d %6d %10d %11.1f %11.1f %11.1f %11.1f\n",
cur.nodeID, cur.queue, cur.queueMax, cur.clientDropped,
float64(cur.clientSent-last.clientSent)/elapsed,
float64(cur.clientRecv-last.clientRecv)/elapsed,
float64(cur.serverSent-last.serverSent)/elapsed,
float64(cur.serverRecv-last.serverRecv)/elapsed)
lastStats[s.nodeID] = cur
}
lastTime = now
log.Infof(ctx, "stats:\n%s", buf.String())
case <-t.stopper.ShouldStop():
return
}
}
})
}
return t
}
func (t *RaftTransport) queuedMessageCount() int64 {
var n int64
addLength := func(k int64, v unsafe.Pointer) bool {
ch := *(*chan *RaftMessageRequest)(v)
n += int64(len(ch))
return true
}
for class := range t.queues {
t.queues[class].Range(addLength)
}
return n
}
func (t *RaftTransport) getHandler(storeID roachpb.StoreID) (RaftMessageHandler, bool) {
if value, ok := t.handlers.Load(int64(storeID)); ok {
return *(*RaftMessageHandler)(value), true
}
return nil, false
}
// handleRaftRequest proxies a request to the listening server interface.
func (t *RaftTransport) handleRaftRequest(
ctx context.Context, req *RaftMessageRequest, respStream RaftMessageResponseStream,
) *roachpb.Error {
handler, ok := t.getHandler(req.ToReplica.StoreID)
if !ok {
log.Warningf(ctx, "unable to accept Raft message from %+v: no handler registered for %+v",
req.FromReplica, req.ToReplica)
return roachpb.NewError(roachpb.NewStoreNotFoundError(req.ToReplica.StoreID))
}
return handler.HandleRaftRequest(ctx, req, respStream)
}
// newRaftMessageResponse constructs a RaftMessageResponse from the
// given request and error.
func newRaftMessageResponse(req *RaftMessageRequest, pErr *roachpb.Error) *RaftMessageResponse {
resp := &RaftMessageResponse{
RangeID: req.RangeID,
// From and To are reversed in the response.
ToReplica: req.FromReplica,
FromReplica: req.ToReplica,
}
if pErr != nil {
resp.Union.SetValue(pErr)
}
return resp
}
func (t *RaftTransport) getStats(
nodeID roachpb.NodeID, class rpc.ConnectionClass,
) *raftTransportStats {
statsMap := &t.stats[class]
value, ok := statsMap.Load(int64(nodeID))
if !ok {
stats := &raftTransportStats{nodeID: nodeID}
value, _ = statsMap.LoadOrStore(int64(nodeID), unsafe.Pointer(stats))
}
return (*raftTransportStats)(value)
}
// RaftMessageBatch proxies the incoming requests to the listening server interface.
func (t *RaftTransport) RaftMessageBatch(stream MultiRaft_RaftMessageBatchServer) error {
errCh := make(chan error, 1)
// Node stopping error is caught below in the select.
if err := t.stopper.RunTask(
stream.Context(), "storage.RaftTransport: processing batch",
func(ctx context.Context) {
t.stopper.RunWorker(ctx, func(ctx context.Context) {
errCh <- func() error {
var stats *raftTransportStats
stream := &lockedRaftMessageResponseStream{wrapped: stream}
for {
batch, err := stream.Recv()
if err != nil {
return err
}
if len(batch.Requests) == 0 {
continue
}
// This code always uses the DefaultClass. Class is primarily a
// client construct and the server has no way to determine which
// class an inbound connection holds on the client side. Because of
// this we associate all server receives and sends with the
// DefaultClass. This data is exclusively used to print a debug
// log message periodically. Using this policy may lead to a
// DefaultClass log line showing a high rate of server recv but
// a low rate of client sends if most of the traffic is due to
// system ranges.
//
// TODO(ajwerner): consider providing transport metadata to inform
// the server of the connection class or keep shared stats for all
// connection with a host.
if stats == nil {
stats = t.getStats(batch.Requests[0].FromReplica.NodeID, rpc.DefaultClass)
}
for i := range batch.Requests {
req := &batch.Requests[i]
atomic.AddInt64(&stats.serverRecv, 1)
if pErr := t.handleRaftRequest(ctx, req, stream); pErr != nil {
atomic.AddInt64(&stats.serverSent, 1)
if err := stream.Send(newRaftMessageResponse(req, pErr)); err != nil {
return err
}
}
}
}
}()
})
}); err != nil {
return err
}
select {
case err := <-errCh:
return err
case <-t.stopper.ShouldQuiesce():
return nil
}
}
// RaftSnapshot handles incoming streaming snapshot requests.
func (t *RaftTransport) RaftSnapshot(stream MultiRaft_RaftSnapshotServer) error {
errCh := make(chan error, 1)
if err := t.stopper.RunAsyncTask(
stream.Context(), "storage.RaftTransport: processing snapshot",
func(ctx context.Context) {
errCh <- func() error {
req, err := stream.Recv()
if err != nil {
return err
}
if req.Header == nil {
return stream.Send(&SnapshotResponse{
Status: SnapshotResponse_ERROR,
Message: "client error: no header in first snapshot request message"})
}
rmr := req.Header.RaftMessageRequest
handler, ok := t.getHandler(rmr.ToReplica.StoreID)
if !ok {
log.Warningf(ctx, "unable to accept Raft message from %+v: no handler registered for %+v",
rmr.FromReplica, rmr.ToReplica)
return roachpb.NewStoreNotFoundError(rmr.ToReplica.StoreID)
}
return handler.HandleSnapshot(req.Header, stream)
}()
}); err != nil {
return err
}
select {
case <-t.stopper.ShouldStop():
return nil
case err := <-errCh:
return err
}
}
// Listen registers a raftMessageHandler to receive proxied messages.
func (t *RaftTransport) Listen(storeID roachpb.StoreID, handler RaftMessageHandler) {
t.handlers.Store(int64(storeID), unsafe.Pointer(&handler))
}
// Stop unregisters a raftMessageHandler.
func (t *RaftTransport) Stop(storeID roachpb.StoreID) {
t.handlers.Delete(int64(storeID))
}
// processQueue opens a Raft client stream and sends messages from the
// designated queue (ch) via that stream, exiting when an error is received or
// when it idles out. All messages remaining in the queue at that point are
// lost and a new instance of processQueue will be started by the next message
// to be sent.
func (t *RaftTransport) processQueue(
nodeID roachpb.NodeID,
ch chan *RaftMessageRequest,
stats *raftTransportStats,
stream MultiRaft_RaftMessageBatchClient,
class rpc.ConnectionClass,
) error {
errCh := make(chan error, 1)
// Starting workers in a task prevents data races during shutdown.
if err := t.stopper.RunTask(
stream.Context(), "storage.RaftTransport: processing queue",
func(ctx context.Context) {
t.stopper.RunWorker(ctx, func(ctx context.Context) {
errCh <- func() error {
for {
resp, err := stream.Recv()
if err != nil {
return err
}
atomic.AddInt64(&stats.clientRecv, 1)
handler, ok := t.getHandler(resp.ToReplica.StoreID)
if !ok {
log.Warningf(ctx, "no handler found for store %s in response %s",
resp.ToReplica.StoreID, resp)
continue
}
if err := handler.HandleRaftResponse(ctx, resp); err != nil {
return err
}
}
}()
})
}); err != nil {
return err
}
var raftIdleTimer timeutil.Timer
defer raftIdleTimer.Stop()
batch := &RaftMessageRequestBatch{}
for {
raftIdleTimer.Reset(raftIdleTimeout)
select {
case <-t.stopper.ShouldStop():
return nil
case <-raftIdleTimer.C:
raftIdleTimer.Read = true
return nil
case err := <-errCh:
return err
case req := <-ch:
batch.Requests = append(batch.Requests, *req)
req.release()
// Pull off as many queued requests as possible.
//
// TODO(peter): Think about limiting the size of the batch we send.
for done := false; !done; {
select {
case req = <-ch:
batch.Requests = append(batch.Requests, *req)
req.release()
default:
done = true
}
}
err := stream.Send(batch)
batch.Requests = batch.Requests[:0]
atomic.AddInt64(&stats.clientSent, 1)
if err != nil {
return err
}
}
}
}
// getQueue returns the queue for the specified node ID and a boolean
// indicating whether the queue already exists (true) or was created (false).
func (t *RaftTransport) getQueue(
nodeID roachpb.NodeID, class rpc.ConnectionClass,
) (chan *RaftMessageRequest, bool) {
queuesMap := &t.queues[class]
value, ok := queuesMap.Load(int64(nodeID))
if !ok {
ch := make(chan *RaftMessageRequest, raftSendBufferSize)
value, ok = queuesMap.LoadOrStore(int64(nodeID), unsafe.Pointer(&ch))
}
return *(*chan *RaftMessageRequest)(value), ok
}
// SendAsync sends a message to the recipient specified in the request. It
// returns false if the outgoing queue is full. The returned bool may be a false
// positive but will never be a false negative; if sent is true the message may
// or may not actually be sent but if it's false the message definitely was not
// sent. It is not safe to continue using the reference to the provided request.
func (t *RaftTransport) SendAsync(req *RaftMessageRequest, class rpc.ConnectionClass) (sent bool) {
toNodeID := req.ToReplica.NodeID
stats := t.getStats(toNodeID, class)
defer func() {
if !sent {
atomic.AddInt64(&stats.clientDropped, 1)
}
}()
if req.RangeID == 0 && len(req.Heartbeats) == 0 && len(req.HeartbeatResps) == 0 {
// Coalesced heartbeats are addressed to range 0; everything else
// needs an explicit range ID.
panic("only messages with coalesced heartbeats or heartbeat responses may be sent to range ID 0")
}
if req.Message.Type == raftpb.MsgSnap {
panic("snapshots must be sent using SendSnapshot")
}
if !t.dialer.GetCircuitBreaker(toNodeID, class).Ready() {
return false
}
ch, existingQueue := t.getQueue(toNodeID, class)
if !existingQueue {
// Note that startProcessNewQueue is in charge of deleting the queue.
ctx := t.AnnotateCtx(context.Background())
if !t.startProcessNewQueue(ctx, toNodeID, class, stats) {
return false
}
}
select {
case ch <- req:
l := int32(len(ch))
if v := atomic.LoadInt32(&stats.queueMax); v < l {
atomic.CompareAndSwapInt32(&stats.queueMax, v, l)
}
return true
default:
req.release()
return false
}
}
// startProcessNewQueue connects to the node and launches a worker goroutine
// that processes the queue for the given nodeID (which must exist) until
// the underlying connection is closed or an error occurs. This method
// takes on the responsibility of deleting the queue when the worker shuts down.
// The class parameter dictates the ConnectionClass which should be used to dial
// the remote node. Traffic for system ranges and heartbeats will receive a
// different class than that of user data ranges.
//
// Returns whether the worker was started (the queue is deleted either way).
func (t *RaftTransport) startProcessNewQueue(
ctx context.Context,
toNodeID roachpb.NodeID,
class rpc.ConnectionClass,
stats *raftTransportStats,
) (started bool) {
cleanup := func(ch chan *RaftMessageRequest) {
// Account for the remainder of `ch` which was never sent.
// NB: we deleted the queue above, so within a short amount
// of time nobody should be writing into the channel any
// more. We might miss a message or two here, but that's
// OK (there's nobody who can safely close the channel the
// way the code is written).
for {
select {
case <-ch:
atomic.AddInt64(&stats.clientDropped, 1)
default:
return
}
}
}
worker := func(ctx context.Context) {
ch, existingQueue := t.getQueue(toNodeID, class)
if !existingQueue {
log.Fatalf(ctx, "queue for n%d does not exist", toNodeID)
}
defer cleanup(ch)
defer t.queues[class].Delete(int64(toNodeID))
conn, err := t.dialer.Dial(ctx, toNodeID, class)
if err != nil {
// DialNode already logs sufficiently, so just return.
return
}
client := NewMultiRaftClient(conn)
batchCtx, cancel := context.WithCancel(ctx)
defer cancel()
stream, err := client.RaftMessageBatch(batchCtx) // closed via cancellation
if err != nil {
log.Warningf(ctx, "creating batch client for node %d failed: %+v", toNodeID, err)
return
}
if err := t.processQueue(toNodeID, ch, stats, stream, class); err != nil {
log.Warningf(ctx, "while processing outgoing Raft queue to node %d: %s:", toNodeID, err)
}
}
// Starting workers in a task prevents data races during shutdown.
workerTask := func(ctx context.Context) {
t.stopper.RunWorker(ctx, worker)
}
err := t.stopper.RunTask(ctx, "storage.RaftTransport: sending messages", workerTask)
if err != nil {
t.queues[class].Delete(int64(toNodeID))
return false
}
return true
}
// SendSnapshot streams the given outgoing snapshot. The caller is responsible
// for closing the OutgoingSnapshot.
func (t *RaftTransport) SendSnapshot(
ctx context.Context,
raftCfg *base.RaftConfig,
storePool *StorePool,
header SnapshotRequest_Header,
snap *OutgoingSnapshot,
newBatch func() storage.Batch,
sent func(),
) error {
var stream MultiRaft_RaftSnapshotClient
nodeID := header.RaftMessageRequest.ToReplica.NodeID
conn, err := t.dialer.Dial(ctx, nodeID, rpc.DefaultClass)
if err != nil {
return err
}
client := NewMultiRaftClient(conn)
stream, err = client.RaftSnapshot(ctx)
if err != nil {
return err
}
defer func() {
if err := stream.CloseSend(); err != nil {
log.Warningf(ctx, "failed to close snapshot stream: %+v", err)
}
}()
return sendSnapshot(ctx, raftCfg, t.st, stream, storePool, header, snap, newBatch, sent)
}