diff --git a/tetrad-lib/src/main/java/edu/cmu/tetrad/search/MarkovCheck.java b/tetrad-lib/src/main/java/edu/cmu/tetrad/search/MarkovCheck.java index 4830e68342..383588ae75 100644 --- a/tetrad-lib/src/main/java/edu/cmu/tetrad/search/MarkovCheck.java +++ b/tetrad-lib/src/main/java/edu/cmu/tetrad/search/MarkovCheck.java @@ -394,6 +394,7 @@ public List> getAndersonDarlingTestAcceptsRejectsNodesForAllNodesPlot NumberFormat nf = new DecimalFormat("0.00"); // Classify nodes into accepts and rejects base on ADTest result, and update confusion stats lists accordingly. for (Node x : allNodes) { + System.out.println("Target Node: " + x); List localIndependenceFacts = getLocalIndependenceFacts(x); List ap_ar_ahp_ahr = getPrecisionAndRecallOnMarkovBlanketGraphPlotData(x, estimatedCpdag, trueGraph); Double ap = ap_ar_ahp_ahr.get(0); @@ -436,6 +437,7 @@ public List> getAndersonDarlingTestAcceptsRejectsNodesForAllNodesPlot accepts_AHR_ADTestP.add(Arrays.asList(ahr, ADTestPValue)); } } + System.out.println("-----------------------------"); } accepts_rejects.add(accepts); accepts_rejects.add(rejects); @@ -540,6 +542,7 @@ public List> getAndersonDarlingTestAcceptsRejectsNodesForAllNodesPlot NumberFormat nf = new DecimalFormat("0.00"); // Classify nodes into accepts and rejects base on ADTest result, and update confusion stats lists accordingly. for (Node x : allNodes) { + System.out.println("Target Node: " + x); List localIndependenceFacts = getLocalIndependenceFacts(x); List lgp_lgr = getPrecisionAndRecallOnMarkovBlanketGraphPlotData2(x, estimatedCpdag, trueGraph); Double lgp = lgp_lgr.get(0); @@ -549,6 +552,7 @@ public List> getAndersonDarlingTestAcceptsRejectsNodesForAllNodesPlot List flatList = shuffledlocalPValues.stream() .flatMap(List::stream) .collect(Collectors.toList()); + System.out.println("# p values feed into ADTest: " + flatList.size() ); Double ADTestPValue = checkAgainstAndersonDarlingTest(flatList); // TODO VBC: what should we do for cases when ADTest is NaN and ∞ ? if (ADTestPValue <= threshold) { @@ -568,6 +572,7 @@ public List> getAndersonDarlingTestAcceptsRejectsNodesForAllNodesPlot accepts_LGR_ADTestP.add(Arrays.asList(lgr, ADTestPValue)); } } + System.out.println("-----------------------------"); } accepts_rejects.add(accepts); accepts_rejects.add(rejects); diff --git a/tetrad-lib/src/test/java/edu/cmu/tetrad/test/TestCheckMarkov.java b/tetrad-lib/src/test/java/edu/cmu/tetrad/test/TestCheckMarkov.java index f86f3387ec..c835cb6596 100644 --- a/tetrad-lib/src/test/java/edu/cmu/tetrad/test/TestCheckMarkov.java +++ b/tetrad-lib/src/test/java/edu/cmu/tetrad/test/TestCheckMarkov.java @@ -1,5 +1,6 @@ package edu.cmu.tetrad.test; +import edu.cmu.tetrad.algcomparison.statistic.*; import edu.cmu.tetrad.data.DataSet; import edu.cmu.tetrad.graph.*; import edu.cmu.tetrad.search.*; @@ -113,26 +114,55 @@ public void test2() { @Test public void testGaussianDAGPrecisionRecallForLocalOnMarkovBlanket() { -// TODO VBC: Also check different dense graph. - Graph trueGraph = RandomGraph.randomDag(20, 0, 80, 100, 100, 100, false); + Graph trueGraph = RandomGraph.randomDag(100, 0, 400, 100, 100, 100, false); System.out.println("Test True Graph: " + trueGraph); System.out.println("Test True Graph size: " + trueGraph.getNodes().size()); SemPm pm = new SemPm(trueGraph); // Parameters without additional setting default tobe Gaussian SemIm im = new SemIm(pm, new Parameters()); - DataSet data = im.simulateData(1000, false); + DataSet data = im.simulateData(10000, false); edu.cmu.tetrad.search.score.SemBicScore score = new SemBicScore(data, false); score.setPenaltyDiscount(2); Graph estimatedCpdag = new PermutationSearch(new Boss(score)).search(); // TODO VBC: Next check different search algo to generate estimated graph. e.g. PC System.out.println("Test Estimated CPDAG Graph: " + estimatedCpdag); System.out.println("~~~~~~~~~~~~~~~~~~~~~~~~~~~~"); + double whole_ap = new AdjacencyPrecision().getValue(trueGraph, estimatedCpdag, null); + double whole_ar = new AdjacencyRecall().getValue(trueGraph, estimatedCpdag, null); + double whole_ahp = new ArrowheadPrecision().getValue(trueGraph, estimatedCpdag, null); + double whole_ahr = new ArrowheadRecall().getValue(trueGraph, estimatedCpdag, null); + double whole_lgp = new LocalGraphPrecision().getValue(trueGraph, estimatedCpdag, null); + double whole_lgr = new LocalGraphRecall().getValue(trueGraph, estimatedCpdag, null); + + testGaussianDAGPrecisionRecallForLocalOnMarkovBlanketUsingAdjAHConfusionMatrix(data, trueGraph, estimatedCpdag); + testGaussianDAGPrecisionRecallForLocalOnMarkovBlanketUsingLGConfusionMatrix(data, trueGraph, estimatedCpdag); + System.out.println("~~~~~~~~~~~~~Full Graph~~~~~~~~~~~~~~~"); + System.out.println("whole_ap: " + whole_ap); + System.out.println("whole_ar: " + whole_ar ); + System.out.println("whole_ahp: " + whole_ahp); + System.out.println("whole_ahr: " + whole_ahr); + System.out.println("whole_lgp: " + whole_lgp); + System.out.println("whole_lgr: " + whole_lgr); + } + public void testGaussianDAGPrecisionRecallForLocalOnMarkovBlanketUsingAdjAHConfusionMatrix(DataSet data, Graph trueGraph, Graph estimatedCpdag) { IndependenceTest fisherZTest = new IndTestFisherZ(data, 0.05); MarkovCheck markovCheck = new MarkovCheck(estimatedCpdag, fisherZTest, ConditioningSetType.MARKOV_BLANKET); -// List> accepts_rejects = markovCheck.getAndersonDarlingTestAcceptsRejectsNodesForAllNodes(fisherZTest, estimatedCpdag, 0.05); - List> accepts_rejects = markovCheck.getAndersonDarlingTestAcceptsRejectsNodesForAllNodesPlotData(fisherZTest, estimatedCpdag, trueGraph, 0.05, 0.5); + // Using Adj, AH confusion matrix + List> accepts_rejects = markovCheck.getAndersonDarlingTestAcceptsRejectsNodesForAllNodesPlotData(fisherZTest, estimatedCpdag, trueGraph, 0.05, 1.0); + List accepts = accepts_rejects.get(0); + List rejects = accepts_rejects.get(1); + System.out.println("Accepts size: " + accepts.size()); + System.out.println("Rejects size: " + rejects.size()); + } + + public void testGaussianDAGPrecisionRecallForLocalOnMarkovBlanketUsingLGConfusionMatrix(DataSet data, Graph trueGraph, Graph estimatedCpdag) { + IndependenceTest fisherZTest = new IndTestFisherZ(data, 0.05); + MarkovCheck markovCheck = new MarkovCheck(estimatedCpdag, fisherZTest, ConditioningSetType.MARKOV_BLANKET); + // Using Local Graph (LG) confusion matrix + // ADTest pass/fail threshold default to be 0.05. shuffleThreshold default to be 0.5 + List> accepts_rejects = markovCheck.getAndersonDarlingTestAcceptsRejectsNodesForAllNodesPlotData2(fisherZTest, estimatedCpdag, trueGraph, 0.05, 1.0); List accepts = accepts_rejects.get(0); List rejects = accepts_rejects.get(1); System.out.println("Accepts size: " + accepts.size()); @@ -406,32 +436,6 @@ public void testNonGaussianCPDAGPrecisionRecallForLocalOnParents() { } } - @Test - public void testGaussianDAGPrecisionRecallForLocalOnMarkovBlanket2() { - Graph trueGraph = RandomGraph.randomDag(20, 0, 80, 100, 100, 100, false); - System.out.println("Test True Graph: " + trueGraph); - System.out.println("Test True Graph size: " + trueGraph.getNodes().size()); - - SemPm pm = new SemPm(trueGraph); - SemIm im = new SemIm(pm, new Parameters()); - DataSet data = im.simulateData(1000, false); - edu.cmu.tetrad.search.score.SemBicScore score = new SemBicScore(data, false); - score.setPenaltyDiscount(2); - Graph estimatedCpdag = new PermutationSearch(new Boss(score)).search(); - System.out.println("Test Estimated CPDAG Graph: " + estimatedCpdag); - System.out.println("~~~~~~~~~~~~~~~~~~~~~~~~~~~~"); - - IndependenceTest fisherZTest = new IndTestFisherZ(data, 0.05); - MarkovCheck markovCheck = new MarkovCheck(estimatedCpdag, fisherZTest, ConditioningSetType.MARKOV_BLANKET); - // ADTest pass/fail threshold default to be 0.05. shuffleThreshold default to be 0.5 - // List> accepts_rejects = markovCheck.getAndersonDarlingTestAcceptsRejectsNodesForAllNodes(fisherZTest, estimatedCpdag, 0.05, 0.5); - List> accepts_rejects = markovCheck.getAndersonDarlingTestAcceptsRejectsNodesForAllNodesPlotData2(fisherZTest, estimatedCpdag, trueGraph, 0.05, 0.3); - - List accepts = accepts_rejects.get(0); - List rejects = accepts_rejects.get(1); - System.out.println("Accepts size: " + accepts.size()); - System.out.println("Rejects size: " + rejects.size()); - } @Test public void testGaussianCPDAGPrecisionRecallForLocalOnMarkovBlanket2() {