Run 3 Electron ID for HZZ analysis

Andro Petković for CJLST group

Training setup

BDT input

ele_oldsigmaietaieta	ele_oldsigmaiphiiphi
ele_oldcircularity	ele_oldr9
ele_scletawidth	ele_sclphiwidth
ele_oldhe	ele_kfhits
ele_kfchi2	ele_gsfchi2
ele_fbrem	ele_gsfhits
ele_expected_inner_hits	ele_conversionVertexFionVertexFitProbability
ele_ep	ele_eelepout
ele_loEmlop	ele_deltaetain
ele_deltaphiin	ele_deltaetaseed ele_rho
ele_psEoverEraw	
ele_pfPhotonIso	ele_pfChargedHadIso
ele_pfNeutralHadIso	ISOLATION RU

For Run3 we switched from particle to cluster-based isolation variables

ele_ecalPFClusterIso ele_hcalPFClusterIso ele_dR03TkSumPt

- Use DY MC to target HZZ analysis
- Split training into 6 categories based on electron p_T and η

Training workflow and datasets

- Reuse training setup from Run 2 (xgbo+bayesian optimization)
- Compare 2017UL vs 2022 results to reproduce previous results and check if machinery works (check Ana's presentation <u>here</u>)
- Compare Run2 vs Run3 training variable distributions
- 2017UL: /DYJetsToLL_M-50_TuneCP5_13TeV-madgraphMLM-pythia8/ RunIISummer20UL17MiniAODv2-106X_mc2017_realistic_v9_ext1-v1
- 2022 3 datasets merged: /DYJetsToLL_M-50_TuneCP5_13p6TeV-madgraphMLM-pythia8/ Run3Winter22MiniAOD-122X_mcRun3_2021_realistic_*

ROC curve comparison, inner barrel

 $p_T < 10 \, {\rm GeV}$

p_T > 10 GeV

ROC curve comparison, outter barrel

p_T < 10 GeV

p_T > 10 GeV

ROC curve comparison, endcap

 p_T < 10 GeV

p_T > 10 GeV

2017UL vs 2022 for target signal efficiency

Region	Sig. eff. target	2017UL bkg. eff.	2022 bkg. eff. particle iso	202 C
EB1_5	81.64 %	5.18%	5.89%	
EB1_10	97.44%	2.87%	2.84%	
EB2_5	80.31%	4.77%	5.63%	
EB2_10	96.68%	3.92%	3.48%	
EE_5	74.38%	3.25%	3.99%	
EE_10	96.62%	7.36%	8.46%	

2 bkg. eff. uster iso	
4.2%	
2.27%	
4.11%	
2.83%	
2.97%	
7.46%	

EB1_5: 5 GeV < p_T < 10 Gev, $|\eta| < 0.8$

EB1_10: $p_T > 10$ Gev, $|\eta| < 0.8$

EB2_5: 5 Gev < p_T < 10 Gev, 0.8 < $|\eta|$ < 1.479

EB2_10: $p_T > 10$ Gev, $0.8 < |\eta| < 1.479$

EE 5: 5 GeV < p_T < 10 Gev, $|\eta| > 1.479$

EE_10: $p_T > 10 \text{ Gev}, |\eta| > 1.479$

Training variable distributions

set to 0, check the details of redefinition <u>here</u>

Training variable distributions

2017 UL, inner barrel, p_T < 10 GeV

2022, inner barrel, p_T < 10 GeV

- Shower shape distributions affected by raised thresholds
- Performance boost when switched from particle to cluster-based isolation variables
- Check distributions of all <u>2017 UL</u> and <u>2022</u> training variables
- Add this BDT (version trained on cluster isolation variables) to next nanoAOD production
- Use in analysis targeting Run3 results

Summary and outlook