-
Notifications
You must be signed in to change notification settings - Fork 4.4k
/
Copy pathHydjet2Hadronizer.cc
538 lines (460 loc) · 23.3 KB
/
Hydjet2Hadronizer.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
/**
* \brief Interface to the HYDJET++ (Hydjet2) generator (since core v. 2.4.3), produces HepMC events
* \version 1.3
* \author Andrey Belyaev
*/
#include <TLorentzVector.h>
#include <TMath.h>
#include <TVector3.h>
#include "GeneratorInterface/Hydjet2Interface/interface/Hydjet2Hadronizer.h"
#include <cmath>
#include <fstream>
#include <iostream>
#include "FWCore/Concurrency/interface/SharedResourceNames.h"
#include "FWCore/Framework/interface/Event.h"
#include "FWCore/Framework/interface/Run.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"
#include "FWCore/Utilities/interface/EDMException.h"
#include "GeneratorInterface/Pythia6Interface/interface/Pythia6Declarations.h"
#include "GeneratorInterface/Pythia6Interface/interface/Pythia6Service.h"
#include "HepMC/GenEvent.h"
#include "HepMC/HeavyIon.h"
#include "HepMC/IO_HEPEVT.h"
#include "HepMC/PythiaWrapper6_4.h"
#include "HepMC/SimpleVector.h"
#include "SimDataFormats/GeneratorProducts/interface/GenEventInfoProduct.h"
#include "SimDataFormats/GeneratorProducts/interface/GenRunInfoProduct.h"
#include "SimDataFormats/GeneratorProducts/interface/HepMCProduct.h"
#include "SimDataFormats/HiGenData/interface/GenHIEvent.h"
CLHEP::HepRandomEngine *hjRandomEngine;
using namespace edm;
using namespace std;
using namespace gen;
int Hydjet2Hadronizer::convertStatusForComponents(int sta, int typ, int pySta) {
int st = -1;
if (typ == 0) //soft
st = 2 - sta;
else if (typ == 1)
st = convertStatus(pySta);
if (st == -1)
throw cms::Exception("ConvertStatus") << "Wrong status code!" << endl;
if (separateHydjetComponents_) {
if (st == 1 && typ == 0)
return 6;
if (st == 1 && typ == 1)
return 7;
if (st == 2 && typ == 0)
return 16;
if (st == 2 && typ == 1)
return 17;
}
return st;
}
int Hydjet2Hadronizer::convertStatus(int st) {
if (st <= 0)
return 0;
if (st <= 10)
return 1;
if (st <= 20)
return 2;
if (st <= 30)
return 3;
else
return -1;
}
const std::vector<std::string> Hydjet2Hadronizer::theSharedResources = {edm::SharedResourceNames::kPythia6};
//____________________________________________________________________________________________
Hydjet2Hadronizer::Hydjet2Hadronizer(const edm::ParameterSet &pset, edm::ConsumesCollector &&iC)
: BaseHadronizer(pset),
rotate_(pset.getParameter<bool>("rotateEventPlane")),
evt(nullptr),
nsub_(0),
nhard_(0),
nsoft_(0),
phi0_(0.),
sinphi0_(0.),
cosphi0_(1.),
fVertex_(nullptr),
pythia6Service_(new Pythia6Service(pset))
{
fParams.doPrintInfo = false;
fParams.allowEmptyEvent = false;
fParams.fNevnt = 0; //not used in CMSSW
fParams.femb = pset.getParameter<int>("embeddingMode"); //
fParams.fSqrtS = pset.getParameter<double>("fSqrtS"); // C.m.s. energy per nucleon pair
fParams.fAw = pset.getParameter<double>("fAw"); // Atomic weigth of nuclei, fAw
fParams.fIfb = pset.getParameter<int>(
"fIfb"); // Flag of type of centrality generation, fBfix (=0 is fixed by fBfix, >0 distributed [fBfmin, fBmax])
fParams.fBmin = pset.getParameter<double>("fBmin"); // Minimum impact parameter in units of nuclear radius, fBmin
fParams.fBmax = pset.getParameter<double>("fBmax"); // Maximum impact parameter in units of nuclear radius, fBmax
fParams.fBfix = pset.getParameter<double>("fBfix"); // Fixed impact parameter in units of nuclear radius, fBfix
fParams.fT = pset.getParameter<double>("fT"); // Temperature at chemical freeze-out, fT [GeV]
fParams.fMuB = pset.getParameter<double>("fMuB"); // Chemical baryon potential per unit charge, fMuB [GeV]
fParams.fMuS = pset.getParameter<double>("fMuS"); // Chemical strangeness potential per unit charge, fMuS [GeV]
fParams.fMuC = pset.getParameter<double>(
"fMuC"); // Chemical charm potential per unit charge, fMuC [GeV] (used if charm production is turned on)
fParams.fMuI3 = pset.getParameter<double>("fMuI3"); // Chemical isospin potential per unit charge, fMuI3 [GeV]
fParams.fThFO = pset.getParameter<double>("fThFO"); // Temperature at thermal freeze-out, fThFO [GeV]
fParams.fMu_th_pip =
pset.getParameter<double>("fMu_th_pip"); // Chemical potential of pi+ at thermal freeze-out, fMu_th_pip [GeV]
fParams.fTau = pset.getParameter<double>(
"fTau"); // Proper time proper at thermal freeze-out for central collisions, fTau [fm/c]
fParams.fSigmaTau = pset.getParameter<double>(
"fSigmaTau"); // Duration of emission at thermal freeze-out for central collisions, fSigmaTau [fm/c]
fParams.fR = pset.getParameter<double>(
"fR"); // Maximal transverse radius at thermal freeze-out for central collisions, fR [fm]
fParams.fYlmax =
pset.getParameter<double>("fYlmax"); // Maximal longitudinal flow rapidity at thermal freeze-out, fYlmax
fParams.fUmax = pset.getParameter<double>(
"fUmax"); // Maximal transverse flow rapidity at thermal freeze-out for central collisions, fUmax
fParams.frhou2 = pset.getParameter<double>("fRhou2"); //parameter to swich ON/OFF = 0) rhou2
fParams.frhou3 = pset.getParameter<double>("fRhou3"); //parameter to swich ON/OFF(0) rhou3
fParams.frhou4 = pset.getParameter<double>("fRhou4"); //parameter to swich ON/OFF(0) rhou4
fParams.fDelta =
pset.getParameter<double>("fDelta"); // Momentum azimuthal anizotropy parameter at thermal freeze-out, fDelta
fParams.fEpsilon =
pset.getParameter<double>("fEpsilon"); // Spatial azimuthal anisotropy parameter at thermal freeze-out, fEpsilon
fParams.fv2 = pset.getParameter<double>("fKeps2"); //parameter to swich ON/OFF(0) epsilon2 fluctuations
fParams.fv3 = pset.getParameter<double>("fKeps3"); //parameter to swich ON/OFF(0) epsilon3 fluctuations
fParams.fIfDeltaEpsilon = pset.getParameter<double>(
"fIfDeltaEpsilon"); // Flag to specify fDelta and fEpsilon values, fIfDeltaEpsilon (=0 user's ones, >=1 calculated)
fParams.fDecay =
pset.getParameter<int>("fDecay"); // Flag to switch on/off hadron decays, fDecay (=0 decays off, >=1 decays on)
fParams.fWeakDecay = pset.getParameter<double>(
"fWeakDecay"); // Low decay width threshold fWeakDecay[GeV]: width<fWeakDecay decay off, width>=fDecayWidth decay on; can be used to switch off weak decays
fParams.fEtaType = pset.getParameter<double>(
"fEtaType"); // Flag to choose longitudinal flow rapidity distribution, fEtaType (=0 uniform, >0 Gaussian with the dispersion Ylmax)
fParams.fTMuType = pset.getParameter<double>(
"fTMuType"); // Flag to use calculated T_ch, mu_B and mu_S as a function of fSqrtS, fTMuType (=0 user's ones, >0 calculated)
fParams.fCorrS = pset.getParameter<double>(
"fCorrS"); // Strangeness supression factor gamma_s with fCorrS value (0<fCorrS <=1, if fCorrS <= 0 then it is calculated)
fParams.fCharmProd = pset.getParameter<int>(
"fCharmProd"); // Flag to include thermal charm production, fCharmProd (=0 no charm production, >=1 charm production)
fParams.fCorrC = pset.getParameter<double>(
"fCorrC"); // Charmness enhancement factor gamma_c with fCorrC value (fCorrC >0, if fCorrC<0 then it is calculated)
fParams.fNhsel = pset.getParameter<int>(
"fNhsel"); //Flag to include jet (J)/jet quenching (JQ) and hydro (H) state production, fNhsel (0 H on & J off, 1 H/J on & JQ off, 2 H/J/HQ on, 3 J on & H/JQ off, 4 H off & J/JQ on)
fParams.fPyhist = pset.getParameter<int>(
"fPyhist"); // Flag to suppress the output of particle history from PYTHIA, fPyhist (=1 only final state particles; =0 full particle history from PYTHIA)
fParams.fIshad = pset.getParameter<int>(
"fIshad"); // Flag to switch on/off nuclear shadowing, fIshad (0 shadowing off, 1 shadowing on)
fParams.fPtmin =
pset.getParameter<double>("fPtmin"); // Minimal pt of parton-parton scattering in PYTHIA event, fPtmin [GeV/c]
fParams.fT0 = pset.getParameter<double>(
"fT0"); // Initial QGP temperature for central Pb+Pb collisions in mid-rapidity, fT0 [GeV]
fParams.fTau0 = pset.getParameter<double>("fTau0"); // Proper QGP formation time in fm/c, fTau0 (0.01<fTau0<10)
fParams.fNf = pset.getParameter<int>("fNf"); // Number of active quark flavours in QGP, fNf (0, 1, 2 or 3)
fParams.fIenglu = pset.getParameter<int>(
"fIenglu"); // Flag to fix type of partonic energy loss, fIenglu (0 radiative and collisional loss, 1 radiative loss only, 2 collisional loss only)
fParams.fIanglu = pset.getParameter<int>(
"fIanglu"); // Flag to fix type of angular distribution of in-medium emitted gluons, fIanglu (0 small-angular, 1 wide-angular, 2 collinear).
edm::FileInPath f1("externals/hydjet2/particles.data");
strcpy(fParams.partDat, (f1.fullPath()).c_str());
edm::FileInPath f2("externals/hydjet2/tabledecay.txt");
strcpy(fParams.tabDecay, (f2.fullPath()).c_str());
fParams.fPythiaTune = false;
if (pset.exists("signalVtx"))
signalVtx_ = pset.getUntrackedParameter<std::vector<double>>("signalVtx");
if (signalVtx_.size() == 4) {
if (!fVertex_)
fVertex_ = new HepMC::FourVector();
LogDebug("EventSignalVertex") << "Setting event signal vertex "
<< " x = " << signalVtx_.at(0) << " y = " << signalVtx_.at(1)
<< " z= " << signalVtx_.at(2) << " t = " << signalVtx_.at(3) << endl;
fVertex_->set(signalVtx_.at(0), signalVtx_.at(1), signalVtx_.at(2), signalVtx_.at(3));
}
// PYLIST Verbosity Level
// Valid PYLIST arguments are: 1, 2, 3, 5, 7, 11, 12, 13
pythiaPylistVerbosity_ = pset.getUntrackedParameter<int>("pythiaPylistVerbosity", 0);
LogDebug("PYLISTverbosity") << "Pythia PYLIST verbosity level = " << pythiaPylistVerbosity_;
//Max number of events printed on verbosity level
maxEventsToPrint_ = pset.getUntrackedParameter<int>("maxEventsToPrint", 0);
LogDebug("Events2Print") << "Number of events to be printed = " << maxEventsToPrint_;
if (fParams.femb == 1) {
fParams.fIfb = 0;
src_ = iC.consumes<CrossingFrame<edm::HepMCProduct>>(
pset.getUntrackedParameter<edm::InputTag>("backgroundLabel", edm::InputTag("mix", "generatorSmeared")));
}
separateHydjetComponents_ = pset.getUntrackedParameter<bool>("separateHydjetComponents", false);
}
//__________________________________________________________________________________________
Hydjet2Hadronizer::~Hydjet2Hadronizer() {
call_pystat(1);
delete pythia6Service_;
}
//_____________________________________________________________________
void Hydjet2Hadronizer::doSetRandomEngine(CLHEP::HepRandomEngine *v) {
pythia6Service_->setRandomEngine(v);
hjRandomEngine = v;
}
//______________________________________________________________________________________________________
bool Hydjet2Hadronizer::readSettings(int) {
Pythia6Service::InstanceWrapper guard(pythia6Service_);
pythia6Service_->setGeneralParams();
fParams.fSeed = hjRandomEngine->CLHEP::HepRandomEngine::getSeed();
LogInfo("Hydjet2Hadronizer|GenSeed") << "Seed for random number generation: "
<< hjRandomEngine->CLHEP::HepRandomEngine::getSeed();
return kTRUE;
}
//______________________________________________________________________________________________________
bool Hydjet2Hadronizer::initializeForInternalPartons() {
Pythia6Service::InstanceWrapper guard(pythia6Service_);
// the input impact parameter (bxx_) is in [fm]; transform in [fm/RA] for hydjet usage
const double ra = nuclear_radius();
LogInfo("Hydjet2Hadronizer|RAScaling") << "Nuclear radius(RA) = " << ra;
fParams.fBmin /= ra;
fParams.fBmax /= ra;
fParams.fBfix /= ra;
hj2 = new Hydjet2(fParams);
return kTRUE;
}
//__________________________________________________________________________________________
bool Hydjet2Hadronizer::generatePartonsAndHadronize() {
Pythia6Service::InstanceWrapper guard(pythia6Service_);
// generate single event
if (fParams.femb == 1) {
const edm::Event &e = getEDMEvent();
HepMC::GenVertex *genvtx = nullptr;
const HepMC::GenEvent *inev = nullptr;
Handle<CrossingFrame<HepMCProduct>> cf;
e.getByToken(src_, cf);
MixCollection<HepMCProduct> mix(cf.product());
if (mix.size() < 1) {
throw cms::Exception("MatchVtx") << "Mixing has " << mix.size() << " sub-events, should have been at least 1"
<< endl;
}
const HepMCProduct &bkg = mix.getObject(0);
if (!(bkg.isVtxGenApplied())) {
throw cms::Exception("MatchVtx") << "Input background does not have smeared vertex!" << endl;
} else {
inev = bkg.GetEvent();
}
genvtx = inev->signal_process_vertex();
if (!genvtx)
throw cms::Exception("MatchVtx") << "Input background does not have signal process vertex!" << endl;
double aX, aY, aZ, aT;
aX = genvtx->position().x();
aY = genvtx->position().y();
aZ = genvtx->position().z();
aT = genvtx->position().t();
if (!fVertex_) {
fVertex_ = new HepMC::FourVector();
}
LogInfo("MatchVtx") << " setting vertex "
<< " aX " << aX << " aY " << aY << " aZ " << aZ << " aT " << aT << endl;
fVertex_->set(aX, aY, aZ, aT);
const HepMC::HeavyIon *hi = inev->heavy_ion();
if (hi) {
fParams.fBfix = (hi->impact_parameter()) / nuclear_radius();
phi0_ = hi->event_plane_angle();
sinphi0_ = sin(phi0_);
cosphi0_ = cos(phi0_);
} else {
LogWarning("EventEmbedding") << "Background event does not have heavy ion record!";
}
} else if (rotate_)
rotateEvtPlane();
nsoft_ = 0;
nhard_ = 0;
// generate one HYDJET event
int ntry = 0;
while (nsoft_ == 0 && nhard_ == 0) {
if (ntry > 100) {
LogError("Hydjet2EmptyEvent") << "##### HYDJET2: No Particles generated, Number of tries =" << ntry;
// Throw an exception. Use the EventCorruption exception since it maps onto SkipEvent
// which is what we want to do here.
std::ostringstream sstr;
sstr << "Hydjet2HadronizerProducer: No particles generated after " << ntry << " tries.\n";
edm::Exception except(edm::errors::EventCorruption, sstr.str());
throw except;
} else {
hj2->GenerateEvent(fParams.fBfix);
if (hj2->IsEmpty()) {
continue;
}
nsoft_ = hj2->GetNhyd();
nsub_ = hj2->GetNjet();
nhard_ = hj2->GetNpyt();
//100 trys
++ntry;
}
}
if (ev == 0) {
Sigin = hj2->GetSigin();
Sigjet = hj2->GetSigjet();
}
ev = true;
if (fParams.fNhsel < 3)
nsub_++;
// event information
std::unique_ptr<HepMC::GenEvent> evt = std::make_unique<HepMC::GenEvent>();
std::unique_ptr<edm::HepMCProduct> HepMCEvt = std::make_unique<edm::HepMCProduct>();
if (nhard_ > 0 || nsoft_ > 0)
get_particles(evt.get());
evt->set_signal_process_id(pypars.msti[0]); // type of the process
evt->set_event_scale(pypars.pari[16]); // Q^2
add_heavy_ion_rec(evt.get());
if (fVertex_) {
// generate new vertex & apply the shift
// Copy the HepMC::GenEvent
HepMCEvt = std::make_unique<edm::HepMCProduct>(evt.get());
HepMCEvt->applyVtxGen(fVertex_);
evt = std::make_unique<HepMC::GenEvent>(*HepMCEvt->GetEvent());
}
HepMC::HEPEVT_Wrapper::check_hepevt_consistency();
LogDebug("HEPEVT_info") << "Ev numb: " << HepMC::HEPEVT_Wrapper::event_number()
<< " Entries number: " << HepMC::HEPEVT_Wrapper::number_entries() << " Max. entries "
<< HepMC::HEPEVT_Wrapper::max_number_entries() << std::endl;
event() = std::move(evt);
return kTRUE;
}
//________________________________________________________________
bool Hydjet2Hadronizer::declareStableParticles(const std::vector<int> &_pdg) {
std::vector<int> pdg = _pdg;
for (size_t i = 0; i < pdg.size(); i++) {
int pyCode = pycomp_(pdg[i]);
std::ostringstream pyCard;
pyCard << "MDCY(" << pyCode << ",1)=0";
std::cout << pyCard.str() << std::endl;
call_pygive(pyCard.str());
}
return true;
}
//________________________________________________________________
bool Hydjet2Hadronizer::hadronize() { return false; }
bool Hydjet2Hadronizer::decay() { return true; }
bool Hydjet2Hadronizer::residualDecay() { return true; }
void Hydjet2Hadronizer::finalizeEvent() {}
void Hydjet2Hadronizer::statistics() {}
const char *Hydjet2Hadronizer::classname() const { return "gen::Hydjet2Hadronizer"; }
//________________________________________________________________
void Hydjet2Hadronizer::rotateEvtPlane() {
const double pi = 3.14159265358979;
phi0_ = 2. * pi * gen::pyr_(nullptr) - pi;
sinphi0_ = sin(phi0_);
cosphi0_ = cos(phi0_);
}
//_____________________________________________________________________
bool Hydjet2Hadronizer::get_particles(HepMC::GenEvent *evt) {
LogDebug("Hydjet2") << " Number of sub events " << nsub_;
LogDebug("Hydjet2") << " Number of hard events " << hj2->GetNjet();
LogDebug("Hydjet2") << " Number of hard particles " << nhard_;
LogDebug("Hydjet2") << " Number of soft particles " << nsoft_;
LogDebug("Hydjet2") << " nhard_ + nsoft_ = " << nhard_ + nsoft_ << " Ntot = " << hj2->GetNtot() << endl;
int ihy = 0;
int isub_l = -1;
int stab = 0;
vector<HepMC::GenParticle *> particle(hj2->GetNtot());
HepMC::GenVertex *sub_vertices = nullptr;
while (ihy < hj2->GetNtot()) {
if ((hj2->GetiJet().at(ihy)) != isub_l) {
sub_vertices = new HepMC::GenVertex(HepMC::FourVector(0, 0, 0, 0), hj2->GetiJet().at(ihy));
evt->add_vertex(sub_vertices);
if (!evt->signal_process_vertex())
evt->set_signal_process_vertex(sub_vertices);
isub_l = hj2->GetiJet().at(ihy);
}
if ((convertStatusForComponents(
(hj2->GetFinal()).at(ihy), (hj2->GetType()).at(ihy), (hj2->GetPythiaStatus().at(ihy)))) == 1)
stab++;
LogDebug("Hydjet2_array") << ihy << " MULTin ev.:" << hj2->GetNtot() << " SubEv.#" << hj2->GetiJet().at(ihy)
<< " Part #" << ihy + 1 << ", PDG: " << hj2->GetPdg().at(ihy) << " (st. "
<< convertStatus(hj2->GetPythiaStatus().at(ihy))
<< ") mother=" << hj2->GetMotherIndex().at(ihy) + 1 << ", childs ("
<< hj2->GetFirstDaughterIndex().at(ihy) + 1 << "-"
<< hj2->GetLastDaughterIndex().at(ihy) + 1 << "), vtx (" << hj2->GetX().at(ihy) << ","
<< hj2->GetY().at(ihy) << "," << hj2->GetZ().at(ihy) << ") " << std::endl;
if ((hj2->GetMotherIndex().at(ihy)) <= 0) {
particle.at(ihy) = build_hyjet2(ihy, ihy + 1);
if (!sub_vertices)
LogError("Hydjet2_array") << "##### HYDJET2: Vertex not initialized!";
else
sub_vertices->add_particle_out(particle.at(ihy));
LogDebug("Hydjet2_array") << " ---> " << ihy + 1 << std::endl;
} else {
particle.at(ihy) = build_hyjet2(ihy, ihy + 1);
int mid = hj2->GetMotherIndex().at(ihy);
while (((mid + 1) < ihy) && (std::abs(hj2->GetPdg().at(mid)) < 100) &&
((hj2->GetFirstDaughterIndex().at(mid + 1)) <= ihy)) {
mid++;
LogDebug("Hydjet2_array") << "======== MID changed to " << mid
<< " ======== PDG(mid) = " << hj2->GetPdg().at(mid) << std::endl;
}
if (std::abs(hj2->GetPdg().at(mid)) < 100) {
mid = hj2->GetMotherIndex().at(ihy);
LogDebug("Hydjet2_array") << "======== MID changed BACK to " << mid
<< " ======== PDG(mid) = " << hj2->GetPdg().at(mid) << std::endl;
}
HepMC::GenParticle *mother = particle.at(mid);
HepMC::GenVertex *prod_vertex = mother->end_vertex();
if (!prod_vertex) {
prod_vertex = build_hyjet2_vertex(ihy, (hj2->GetiJet().at(ihy)));
prod_vertex->add_particle_in(mother);
LogDebug("Hydjet2_array") << " <--- " << mid + 1 << std::endl;
evt->add_vertex(prod_vertex);
}
prod_vertex->add_particle_out(particle.at(ihy));
LogDebug("Hydjet2_array") << " ---" << mid + 1 << "---> " << ihy + 1 << std::endl;
}
ihy++;
}
LogDebug("Hydjet2_array") << " MULTin ev.:" << hj2->GetNtot() << ", last index: " << ihy - 1
<< ", stable particles: " << stab << std::endl;
return kTRUE;
}
//___________________________________________________________________
HepMC::GenParticle *Hydjet2Hadronizer::build_hyjet2(int index, int barcode) {
// Build particle object corresponding to index in hyjets (soft+hard)
double px0 = (hj2->GetPx()).at(index);
double py0 = (hj2->GetPy()).at(index);
double px = px0 * cosphi0_ - py0 * sinphi0_;
double py = py0 * cosphi0_ + px0 * sinphi0_;
HepMC::GenParticle *p = new HepMC::GenParticle(
HepMC::FourVector(px, // px
py, // py
(hj2->GetPz()).at(index), // pz
(hj2->GetE()).at(index)), // E
(hj2->GetPdg()).at(index), // id
convertStatusForComponents(
(hj2->GetFinal()).at(index), (hj2->GetType()).at(index), (hj2->GetPythiaStatus()).at(index)) // status
);
p->suggest_barcode(barcode);
return p;
}
//___________________________________________________________________
HepMC::GenVertex *Hydjet2Hadronizer::build_hyjet2_vertex(int i, int id) {
// build verteces for the hyjets stored events
double x0 = (hj2->GetX()).at(i);
double y0 = (hj2->GetY()).at(i);
// convert to mm (as in PYTHIA6)
const double fm_to_mm = 1e-12;
double x = fm_to_mm * (x0 * cosphi0_ - y0 * sinphi0_);
double y = fm_to_mm * (y0 * cosphi0_ + x0 * sinphi0_);
double z = fm_to_mm * (hj2->GetZ()).at(i);
double t = fm_to_mm * (hj2->GetT()).at(i);
HepMC::GenVertex *vertex = new HepMC::GenVertex(HepMC::FourVector(x, y, z, t), id);
return vertex;
}
//_____________________________________________________________________
void Hydjet2Hadronizer::add_heavy_ion_rec(HepMC::GenEvent *evt) {
// heavy ion record in the final CMSSW Event
int nproj = static_cast<int>((hj2->GetNpart()) / 2);
int ntarg = static_cast<int>((hj2->GetNpart()) - nproj);
HepMC::HeavyIon *hi = new HepMC::HeavyIon(nsub_, // Ncoll_hard/N of SubEvents
nproj, // Npart_proj
ntarg, // Npart_targ
hj2->GetNbcol(), // Ncoll
0, // spectator_neutrons
0, // spectator_protons
0, // N_Nwounded_collisions
0, // Nwounded_N_collisions
0, // Nwounded_Nwounded_collisions
hj2->GetBgen() * nuclear_radius(), // impact_parameter in [fm]
phi0_, // event_plane_angle
hj2->GetPsiv3(), // eccentricity <<<---- psi for v3!!!
Sigin // sigma_inel_NN
);
evt->set_heavy_ion(*hi);
delete hi;
}