-
Notifications
You must be signed in to change notification settings - Fork 4.3k
/
Copy pathTrackBase.h
855 lines (644 loc) · 29.7 KB
/
TrackBase.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
#ifndef TrackReco_TrackBase_h
#define TrackReco_TrackBase_h
/** \class reco::TrackBase TrackBase.h DataFormats/TrackReco/interface/TrackBase.h
*
* Common base class to all track types, including Muon fits.
* Internally, the following information is stored: <BR>
* <DT> A reference position on the track: (vx,vy,vz) </DT>
* <DT> Momentum at this given reference point on track: (px,py,pz) </DT>
* <DT> 5D curvilinear covariance matrix from the track fit </DT>
* <DT> Charge </DT>
* <DT> Chi-square and number of degrees of freedom </DT>
* <DT> Summary information of the hit pattern </DT>
*
* For tracks reconstructed in the CMS Tracker, the reference position is the point of
* closest approach to the centre of CMS. For muons, this is not necessarily true.
*
* Parameters associated to the 5D curvilinear covariance matrix: <BR>
* <B> (qoverp, lambda, phi, dxy, dsz) </B><BR>
* defined as: <BR>
* <DT> qoverp = q / abs(p) = signed inverse of momentum [1/GeV] </DT>
* <DT> lambda = pi/2 - polar angle at the given point </DT>
* <DT> phi = azimuth angle at the given point </DT>
* <DT> dxy = -vx*sin(phi) + vy*cos(phi) [cm] </DT>
* <DT> dsz = vz*cos(lambda) - (vx*cos(phi)+vy*sin(phi))*sin(lambda) [cm] </DT>
*
* Geometrically, dxy is the signed distance in the XY plane between the
* the straight line passing through (vx,vy) with azimuthal angle phi and
* the point (0,0).<BR>
* The dsz parameter is the signed distance in the SZ plane between the
* the straight line passing through (vx,vy,vz) with angles (phi, lambda) and
* the point (s=0,z=0). The S axis is defined by the projection of the
* straight line onto the XY plane. The convention is to assign the S
* coordinate for (vx,vy) as the value vx*cos(phi)+vy*sin(phi). This value is
* zero when (vx,vy) is the point of minimum transverse distance to (0,0).
*
* Note that dxy and dsz provide sensible estimates of the distance from
* the true particle trajectory to (0,0,0) ONLY in two cases:<BR>
* <DT> When (vx,vy,vz) already correspond to the point of minimum transverse
* distance to (0,0,0) or is close to it (so that the differences
* between considering the exact trajectory or a straight line in this range
* are negligible). This is usually true for Tracker tracks. </DT>
* <DT> When the track has infinite or extremely high momentum </DT>
*
* More details about this parametrization are provided in the following document: <BR>
* <a href="http://cms.cern.ch/iCMS/jsp/openfile.jsp?type=NOTE&year=2006&files=NOTE2006_001.pdf">A. Strandlie, W. Wittek, "Propagation of Covariance Matrices...", CMS Note 2006/001</a> <BR>
*
* \author Thomas Speer, Luca Lista, Pascal Vanlaer, Juan Alcaraz
*
*/
#include "DataFormats/TrackReco/interface/HitPattern.h"
#include "DataFormats/BeamSpot/interface/BeamSpot.h"
#include "DataFormats/Math/interface/Vector.h"
#include "DataFormats/Math/interface/Error.h"
#include "DataFormats/Math/interface/Vector3D.h"
#include "DataFormats/Math/interface/Point3D.h"
#include "DataFormats/Math/interface/Error.h"
#include <bitset>
namespace reco {
class TrackBase {
public:
/// parameter dimension
enum { dimension = 5 };
/// error matrix size
enum { covarianceSize = dimension * (dimension + 1) / 2 };
/// parameter vector
typedef math::Vector<dimension>::type ParameterVector;
/// 5 parameter covariance matrix
typedef math::Error<dimension>::type CovarianceMatrix;
/// spatial vector
typedef math::XYZVector Vector;
/// point in the space
typedef math::XYZPoint Point;
/// enumerator provided indices to the five parameters
enum { i_qoverp = 0, i_lambda, i_phi, i_dxy, i_dsz };
/// index type
typedef unsigned int index;
/// track algorithm
enum TrackAlgorithm {
undefAlgorithm = 0,
ctf = 1,
duplicateMerge = 2,
cosmics = 3,
initialStep = 4,
lowPtTripletStep = 5,
pixelPairStep = 6,
detachedTripletStep = 7,
mixedTripletStep = 8,
pixelLessStep = 9,
tobTecStep = 10,
jetCoreRegionalStep = 11,
conversionStep = 12,
muonSeededStepInOut = 13,
muonSeededStepOutIn = 14,
outInEcalSeededConv = 15,
inOutEcalSeededConv = 16,
nuclInter = 17,
standAloneMuon = 18,
globalMuon = 19,
cosmicStandAloneMuon = 20,
cosmicGlobalMuon = 21,
// Phase1
highPtTripletStep = 22,
lowPtQuadStep = 23,
detachedQuadStep = 24,
displacedGeneralStep = 25,
displacedRegionalStep = 26,
bTagGhostTracks = 27,
beamhalo = 28,
gsf = 29,
// HLT algo name
hltPixel = 30,
// steps used by PF
hltIter0 = 31,
hltIter1 = 32,
hltIter2 = 33,
hltIter3 = 34,
hltIter4 = 35,
// steps used by all other objects @HLT
hltIterX = 36,
// steps used by HI muon regional iterative tracking
hiRegitMuInitialStep = 37,
hiRegitMuLowPtTripletStep = 38,
hiRegitMuPixelPairStep = 39,
hiRegitMuDetachedTripletStep = 40,
hiRegitMuMixedTripletStep = 41,
hiRegitMuPixelLessStep = 42,
hiRegitMuTobTecStep = 43,
hiRegitMuMuonSeededStepInOut = 44,
hiRegitMuMuonSeededStepOutIn = 45,
algoSize = 46
};
/// algo mask
typedef std::bitset<algoSize> AlgoMask;
static const std::string algoNames[];
/// track quality
enum TrackQuality {
undefQuality = -1,
loose = 0,
tight = 1,
highPurity = 2,
confirmed = 3, // means found by more than one iteration
goodIterative = 4, // meaningless
looseSetWithPV = 5,
highPuritySetWithPV = 6,
discarded = 7, // because a better track found. kept in the collection for reference....
qualitySize = 8
};
static const std::string qualityNames[];
/// default constructor
TrackBase();
/// constructor from fit parameters and error matrix
TrackBase(double chi2,
double ndof,
const Point &vertex,
const Vector &momentum,
int charge,
const CovarianceMatrix &cov,
TrackAlgorithm = undefAlgorithm,
TrackQuality quality = undefQuality,
signed char nloops = 0,
uint8_t stopReason = 0,
float t0 = 0.f,
float beta = 0.f,
float covt0t0 = -1.f,
float covbetabeta = -1.f);
/// virtual destructor
virtual ~TrackBase();
/// return true if timing measurement is usable
bool isTimeOk() const { return covt0t0_ > 0.f; }
/// chi-squared of the fit
double chi2() const;
/// number of degrees of freedom of the fit
double ndof() const;
/// chi-squared divided by n.d.o.f. (or chi-squared * 1e6 if n.d.o.f. is zero)
double normalizedChi2() const;
/// track electric charge
int charge() const;
/// q / p
double qoverp() const;
/// polar angle
double theta() const;
/// Lambda angle
double lambda() const;
/// dxy parameter. (This is the transverse impact parameter w.r.t. to (0,0,0) ONLY if refPoint is close to (0,0,0): see parametrization definition above for details). See also function dxy(myBeamSpot).
double dxy() const;
/// dxy parameter in perigee convention (d0 = -dxy)
double d0() const;
/// dsz parameter (THIS IS NOT the SZ impact parameter to (0,0,0) if refPoint is far from (0,0,0): see parametrization definition above for details)
double dsz() const;
/// dz parameter (= dsz/cos(lambda)). This is the track z0 w.r.t (0,0,0) only if the refPoint is close to (0,0,0). See also function dz(myBeamSpot)
double dz() const;
/// momentum vector magnitude square
double p2() const;
/// momentum vector magnitude
double p() const;
/// track transverse momentum square
double pt2() const;
/// track transverse momentum
double pt() const;
/// x coordinate of momentum vector
double px() const;
/// y coordinate of momentum vector
double py() const;
/// z coordinate of momentum vector
double pz() const;
/// azimuthal angle of momentum vector
double phi() const;
/// pseudorapidity of momentum vector
double eta() const;
/// x coordinate of the reference point on track
double vx() const;
/// y coordinate of the reference point on track
double vy() const;
/// z coordinate of the reference point on track
double vz() const;
/// track momentum vector
const Vector &momentum() const;
/// Reference point on the track
const Point &referencePoint() const;
/// time at the reference point
double t0() const;
/// velocity at the reference point in natural units
double beta() const;
/// reference point on the track. This method is DEPRECATED, please use referencePoint() instead
const Point &vertex() const;
//__attribute__((deprecated("This method is DEPRECATED, please use referencePoint() instead.")));
/// dxy parameter with respect to a user-given beamSpot (WARNING: this quantity can only be interpreted as a minimum transverse distance if beamSpot, if the beam spot is reasonably close to the refPoint, since linear approximations are involved). This is a good approximation for Tracker tracks.
double dxy(const Point &myBeamSpot) const;
/// dxy parameter with respect to the beamSpot taking into account the beamspot slopes (WARNING: this quantity can only be interpreted as a minimum transverse distance if beamSpot, if the beam spot is reasonably close to the refPoint, since linear approximations are involved). This is a good approximation for Tracker tracks.
double dxy(const BeamSpot &theBeamSpot) const;
/// dsz parameter with respect to a user-given beamSpot (WARNING: this quantity can only be interpreted as the distance in the S-Z plane to the beamSpot, if the beam spot is reasonably close to the refPoint, since linear approximations are involved). This is a good approximation for Tracker tracks.
double dsz(const Point &myBeamSpot) const;
/// dz parameter with respect to a user-given beamSpot (WARNING: this quantity can only be interpreted as the track z0, if the beamSpot is reasonably close to the refPoint, since linear approximations are involved). This is a good approximation for Tracker tracks.
double dz(const Point &myBeamSpot) const;
/// Track parameters with one-to-one correspondence to the covariance matrix
ParameterVector parameters() const;
/// return track covariance matrix
CovarianceMatrix covariance() const;
/// i-th parameter ( i = 0, ... 4 )
double parameter(int i) const;
/// (i,j)-th element of covariance matrix (i, j = 0, ... 4)
double covariance(int i, int j) const;
/// error on t0
double covt0t0() const;
/// error on beta
double covBetaBeta() const;
/// error on specified element
double error(int i) const;
/// error on signed transverse curvature
double qoverpError() const;
/// error on Pt (set to 1000**2 TeV**2 if charge==0 for safety)
double ptError2() const;
/// error on Pt (set to 1000 TeV if charge==0 for safety)
double ptError() const;
/// error on theta
double thetaError() const;
/// error on lambda
double lambdaError() const;
/// error on eta
double etaError() const;
/// error on phi
double phiError() const;
/// error on dxy
double dxyError() const;
/// error on d0
double d0Error() const;
/// error on dsz
double dszError() const;
/// error on dz
double dzError() const;
/// error on t0
double t0Error() const;
/// error on beta
double betaError() const;
/// error on dxy with respect to a user-given reference point + uncertainty (i.e. reco::Vertex position)
double dxyError(Point const &vtx, math::Error<3>::type const &vertexCov) const;
/// error on dxy with respect to a user-given beamspot
double dxyError(const BeamSpot &theBeamSpot) const;
/// fill SMatrix
CovarianceMatrix &fill(CovarianceMatrix &v) const;
/// covariance matrix index in array
static index covIndex(index i, index j);
/// Access the hit pattern, indicating in which Tracker layers the track has hits.
const HitPattern &hitPattern() const;
/// number of valid hits found
unsigned short numberOfValidHits() const;
/// number of cases where track crossed a layer without getting a hit.
unsigned short numberOfLostHits() const;
/// number of hits expected from inner track extrapolation but missing
int missingInnerHits() const;
/// number of hits expected from outer track extrapolation but missing
int missingOuterHits() const;
/// fraction of valid hits on the track
double validFraction() const;
/// append hit patterns from vector of hit references
template <typename C>
bool appendHits(const C &c, const TrackerTopology &ttopo);
template <typename I>
bool appendHits(const I &begin, const I &end, const TrackerTopology &ttopo);
/// append a single hit to the HitPattern
bool appendHitPattern(const TrackingRecHit &hit, const TrackerTopology &ttopo);
bool appendHitPattern(const DetId &id, TrackingRecHit::Type hitType, const TrackerTopology &ttopo);
/**
* These are meant to be used only in cases where the an
* already-packed hit information is re-interpreted in terms of
* HitPattern (i.e. MiniAOD PackedCandidate, and the IO rule for
* reading old versions of HitPattern)
*/
bool appendTrackerHitPattern(uint16_t subdet, uint16_t layer, uint16_t stereo, TrackingRecHit::Type hitType);
bool appendHitPattern(const uint16_t pattern, TrackingRecHit::Type hitType);
/**
* This is meant to be used only in cases where the an
* already-packed hit information is re-interpreted in terms of
* HitPattern (i.e. the IO rule for reading old versions of
* HitPattern)
*/
bool appendMuonHitPattern(const DetId &id, TrackingRecHit::Type hitType);
/// Sets HitPattern as empty
void resetHitPattern();
///Track algorithm
void setAlgorithm(const TrackAlgorithm a);
void setOriginalAlgorithm(const TrackAlgorithm a);
void setAlgoMask(AlgoMask a) { algoMask_ = a; }
AlgoMask algoMask() const { return algoMask_; }
unsigned long long algoMaskUL() const { return algoMask().to_ullong(); }
bool isAlgoInMask(TrackAlgorithm a) const { return algoMask()[a]; }
TrackAlgorithm algo() const;
TrackAlgorithm originalAlgo() const;
std::string algoName() const;
static std::string algoName(TrackAlgorithm);
static TrackAlgorithm algoByName(const std::string &name);
///Track quality
bool quality(const TrackQuality) const;
void setQuality(const TrackQuality);
static std::string qualityName(TrackQuality);
static TrackQuality qualityByName(const std::string &name);
int qualityMask() const;
void setQualityMask(int qualMask);
void setNLoops(signed char value);
bool isLooper() const;
signed char nLoops() const;
void setStopReason(uint8_t value) { stopReason_ = value; }
uint8_t stopReason() const { return stopReason_; }
private:
/// hit pattern
HitPattern hitPattern_;
/// perigee 5x5 covariance matrix
float covariance_[covarianceSize];
/// errors for time and velocity (separate from cov for now)
float covt0t0_, covbetabeta_;
/// chi-squared
float chi2_;
/// innermost (reference) point on track
Point vertex_;
/// time at the reference point on track
float t0_;
/// momentum vector at innermost point
Vector momentum_;
/// norm of the particle velocity at innermost point on track
/// can multiply by momentum_.Unit() to get velocity vector
float beta_;
/// algo mask, bit set for the algo where it was reconstructed + each algo a track was found overlapping by the listmerger
std::bitset<algoSize> algoMask_;
/// number of degrees of freedom
float ndof_;
/// electric charge
char charge_;
/// track algorithm
uint8_t algorithm_;
/// track algorithm
uint8_t originalAlgorithm_;
/// track quality
uint8_t quality_;
/// number of loops made during the building of the trajectory of a looper particle
// I use signed char because I don't expect more than 128 loops and I could use a negative value for a special purpose.
signed char nLoops_;
/// Stop Reason
uint8_t stopReason_;
};
// Access the hit pattern, indicating in which Tracker layers the track has hits.
inline const HitPattern &TrackBase::hitPattern() const { return hitPattern_; }
inline bool TrackBase::appendHitPattern(const DetId &id, TrackingRecHit::Type hitType, const TrackerTopology &ttopo) {
return hitPattern_.appendHit(id, hitType, ttopo);
}
inline bool TrackBase::appendHitPattern(const TrackingRecHit &hit, const TrackerTopology &ttopo) {
return hitPattern_.appendHit(hit, ttopo);
}
inline bool TrackBase::appendTrackerHitPattern(uint16_t subdet,
uint16_t layer,
uint16_t stereo,
TrackingRecHit::Type hitType) {
return hitPattern_.appendTrackerHit(subdet, layer, stereo, hitType);
}
inline bool TrackBase::appendHitPattern(uint16_t pattern, TrackingRecHit::Type hitType) {
return hitPattern_.appendHit(pattern, hitType);
}
inline bool TrackBase::appendMuonHitPattern(const DetId &id, TrackingRecHit::Type hitType) {
return hitPattern_.appendMuonHit(id, hitType);
}
inline void TrackBase::resetHitPattern() { hitPattern_.clear(); }
template <typename I>
bool TrackBase::appendHits(const I &begin, const I &end, const TrackerTopology &ttopo) {
return hitPattern_.appendHits(begin, end, ttopo);
}
template <typename C>
bool TrackBase::appendHits(const C &c, const TrackerTopology &ttopo) {
return hitPattern_.appendHits(c.begin(), c.end(), ttopo);
}
inline TrackBase::index TrackBase::covIndex(index i, index j) {
int a = (i <= j ? i : j);
int b = (i <= j ? j : i);
return b * (b + 1) / 2 + a;
}
inline TrackBase::TrackAlgorithm TrackBase::algo() const { return (TrackAlgorithm)(algorithm_); }
inline TrackBase::TrackAlgorithm TrackBase::originalAlgo() const { return (TrackAlgorithm)(originalAlgorithm_); }
inline std::string TrackBase::algoName() const { return TrackBase::algoName(algo()); }
inline bool TrackBase::quality(const TrackBase::TrackQuality q) const {
switch (q) {
case undefQuality:
return quality_ == 0;
case goodIterative:
return (quality_ & (1 << TrackBase::highPurity)) >> TrackBase::highPurity;
default:
return (quality_ & (1 << q)) >> q;
}
return false;
}
inline void TrackBase::setQuality(const TrackBase::TrackQuality q) {
if (q == undefQuality) {
quality_ = 0;
} else {
quality_ |= (1 << q);
}
}
inline std::string TrackBase::qualityName(TrackQuality q) {
if (int(q) < int(qualitySize) && int(q) >= 0) {
return qualityNames[int(q)];
}
return "undefQuality";
}
inline std::string TrackBase::algoName(TrackAlgorithm a) {
if (int(a) < int(algoSize) && int(a) > 0) {
return algoNames[int(a)];
}
return "undefAlgorithm";
}
// chi-squared of the fit
inline double TrackBase::chi2() const { return chi2_; }
// number of degrees of freedom of the fit
inline double TrackBase::ndof() const { return ndof_; }
// chi-squared divided by n.d.o.f. (or chi-squared * 1e6 if n.d.o.f. is zero)
inline double TrackBase::normalizedChi2() const { return ndof_ != 0 ? chi2_ / ndof_ : chi2_ * 1e6; }
// track electric charge
inline int TrackBase::charge() const { return charge_; }
// q / p
inline double TrackBase::qoverp() const { return charge() / p(); }
// polar angle
inline double TrackBase::theta() const { return momentum_.theta(); }
// Lambda angle
inline double TrackBase::lambda() const { return M_PI_2 - momentum_.theta(); }
// dxy parameter. (This is the transverse impact parameter w.r.t. to (0,0,0) ONLY if refPoint is close to (0,0,0): see parametrization definition above for details). See also function dxy(myBeamSpot) below.
inline double TrackBase::dxy() const { return (-vx() * py() + vy() * px()) / pt(); }
// dxy parameter in perigee convention (d0 = -dxy)
inline double TrackBase::d0() const { return -dxy(); }
// dsz parameter (THIS IS NOT the SZ impact parameter to (0,0,0) if refPoint is far from (0,0,0): see parametrization definition above for details)
inline double TrackBase::dsz() const {
const auto thept = pt();
const auto thepinv = 1 / p();
const auto theptoverp = thept * thepinv;
return vz() * theptoverp - (vx() * px() + vy() * py()) / thept * pz() * thepinv;
}
// dz parameter (= dsz/cos(lambda)). This is the track z0 w.r.t (0,0,0) only if the refPoint is close to (0,0,0). See also function dz(myBeamSpot) below.
inline double TrackBase::dz() const {
const auto thept2inv = 1 / pt2();
return vz() - (vx() * px() + vy() * py()) * pz() * thept2inv;
}
// momentum vector magnitude square
inline double TrackBase::p2() const { return momentum_.Mag2(); }
// momentum vector magnitude
inline double TrackBase::p() const { return sqrt(p2()); }
// track transverse momentum square
inline double TrackBase::pt2() const { return momentum_.Perp2(); }
// track transverse momentum
inline double TrackBase::pt() const { return sqrt(pt2()); }
// x coordinate of momentum vector
inline double TrackBase::px() const { return momentum_.x(); }
// y coordinate of momentum vector
inline double TrackBase::py() const { return momentum_.y(); }
// z coordinate of momentum vector
inline double TrackBase::pz() const { return momentum_.z(); }
// azimuthal angle of momentum vector
inline double TrackBase::phi() const { return momentum_.Phi(); }
// pseudorapidity of momentum vector
inline double TrackBase::eta() const { return momentum_.Eta(); }
// x coordinate of the reference point on track
inline double TrackBase::vx() const { return vertex_.x(); }
// y coordinate of the reference point on track
inline double TrackBase::vy() const { return vertex_.y(); }
// z coordinate of the reference point on track
inline double TrackBase::vz() const { return vertex_.z(); }
// track momentum vector
inline const TrackBase::Vector &TrackBase::momentum() const { return momentum_; }
// Reference point on the track
inline const TrackBase::Point &TrackBase::referencePoint() const { return vertex_; }
// Time at the reference point on the track
inline double TrackBase::t0() const { return t0_; }
// Velocity at the reference point on the track in natural units
inline double TrackBase::beta() const { return beta_; }
// reference point on the track. This method is DEPRECATED, please use referencePoint() instead
inline const TrackBase::Point &TrackBase::vertex() const { return vertex_; }
// dxy parameter with respect to a user-given beamSpot
// (WARNING: this quantity can only be interpreted as a minimum transverse distance if beamSpot, if the beam spot is reasonably close to the refPoint, since linear approximations are involved).
// This is a good approximation for Tracker tracks.
inline double TrackBase::dxy(const Point &myBeamSpot) const {
return (-(vx() - myBeamSpot.x()) * py() + (vy() - myBeamSpot.y()) * px()) / pt();
}
// dxy parameter with respect to the beamSpot taking into account the beamspot slopes
// (WARNING: this quantity can only be interpreted as a minimum transverse distance if beamSpot, if the beam spot is reasonably close to the refPoint, since linear approximations are involved).
// This is a good approximation for Tracker tracks.
inline double TrackBase::dxy(const BeamSpot &theBeamSpot) const { return dxy(theBeamSpot.position(vz())); }
// dsz parameter with respect to a user-given beamSpot
// (WARNING: this quantity can only be interpreted as the distance in the S-Z plane to the beamSpot, if the beam spot is reasonably close to the refPoint, since linear approximations are involved).
// This is a good approximation for Tracker tracks.
inline double TrackBase::dsz(const Point &myBeamSpot) const {
const auto thept = pt();
const auto thepinv = 1 / p();
const auto theptoverp = thept * thepinv;
return (vz() - myBeamSpot.z()) * theptoverp -
((vx() - myBeamSpot.x()) * px() + (vy() - myBeamSpot.y()) * py()) / thept * pz() * thepinv;
}
// dz parameter with respect to a user-given beamSpot
// (WARNING: this quantity can only be interpreted as the track z0, if the beamSpot is reasonably close to the refPoint, since linear approximations are involved).
// This is a good approximation for Tracker tracks.
inline double TrackBase::dz(const Point &myBeamSpot) const {
const auto theptinv2 = 1 / pt2();
return (vz() - myBeamSpot.z()) -
((vx() - myBeamSpot.x()) * px() + (vy() - myBeamSpot.y()) * py()) * pz() * theptinv2;
}
// Track parameters with one-to-one correspondence to the covariance matrix
inline TrackBase::ParameterVector TrackBase::parameters() const {
return TrackBase::ParameterVector(qoverp(), lambda(), phi(), dxy(), dsz());
}
// return track covariance matrix
inline TrackBase::CovarianceMatrix TrackBase::covariance() const {
CovarianceMatrix m;
fill(m);
return m;
}
// i-th parameter ( i = 0, ... 4 )
inline double TrackBase::parameter(int i) const { return parameters()[i]; }
// (i,j)-th element of covariance matrix (i, j = 0, ... 4)
inline double TrackBase::covariance(int i, int j) const { return covariance_[covIndex(i, j)]; }
// error on specified element
inline double TrackBase::error(int i) const { return sqrt(covariance_[covIndex(i, i)]); }
// error on signed transverse curvature
inline double TrackBase::qoverpError() const { return error(i_qoverp); }
// error on Pt (set to 1000**2 TeV**2 if charge==0 for safety)
inline double TrackBase::ptError2() const {
const auto thecharge = charge();
if (thecharge != 0) {
const auto thept2 = pt2();
const auto thep2 = p2();
const auto thepz = pz();
const auto ptimespt = sqrt(thep2 * thept2);
const auto oneovercharge = 1 / thecharge;
return thept2 * thep2 * oneovercharge * oneovercharge * covariance(i_qoverp, i_qoverp) +
2 * ptimespt * oneovercharge * thepz * covariance(i_qoverp, i_lambda) +
thepz * thepz * covariance(i_lambda, i_lambda);
}
return 1.e12;
}
// error on Pt (set to 1000 TeV if charge==0 for safety)
inline double TrackBase::ptError() const { return sqrt(ptError2()); }
// error on theta
inline double TrackBase::thetaError() const { return error(i_lambda); }
// error on lambda
inline double TrackBase::lambdaError() const { return error(i_lambda); }
// error on eta
inline double TrackBase::etaError() const { return error(i_lambda) * sqrt(p2() / pt2()); }
// error on phi
inline double TrackBase::phiError() const { return error(i_phi); }
// error on dxy
inline double TrackBase::dxyError() const { return error(i_dxy); }
// error on d0
inline double TrackBase::d0Error() const { return error(i_dxy); }
// error on dsz
inline double TrackBase::dszError() const { return error(i_dsz); }
// error on dz
inline double TrackBase::dzError() const { return error(i_dsz) * sqrt(p2() / pt2()); }
// covariance of t0
inline double TrackBase::covt0t0() const { return covt0t0_; }
// covariance of beta
inline double TrackBase::covBetaBeta() const { return covbetabeta_; }
// error on t0
inline double TrackBase::t0Error() const { return std::sqrt(covt0t0_); }
// error on beta
inline double TrackBase::betaError() const { return std::sqrt(covbetabeta_); }
// error on dxy with respect to a given beamspot
inline double TrackBase::dxyError(const BeamSpot &theBeamSpot) const {
return dxyError(theBeamSpot.position(vz()), theBeamSpot.rotatedCovariance3D());
}
// number of valid hits found
inline unsigned short TrackBase::numberOfValidHits() const { return hitPattern_.numberOfValidHits(); }
// number of cases where track crossed a layer without getting a hit.
inline unsigned short TrackBase::numberOfLostHits() const {
return hitPattern_.numberOfLostHits(HitPattern::TRACK_HITS);
}
// number of hits expected from inner track extrapolation but missing
inline int TrackBase::missingInnerHits() const {
return hitPattern_.numberOfLostHits(HitPattern::MISSING_INNER_HITS);
}
// number of hits expected from outer track extrapolation but missing
inline int TrackBase::missingOuterHits() const {
return hitPattern_.numberOfLostHits(HitPattern::MISSING_OUTER_HITS);
}
// fraction of valid hits on the track
inline double TrackBase::validFraction() const {
int valid = hitPattern_.numberOfValidTrackerHits();
int lost = hitPattern_.numberOfLostTrackerHits(HitPattern::TRACK_HITS);
int lostIn = hitPattern_.numberOfLostTrackerHits(HitPattern::MISSING_INNER_HITS);
int lostOut = hitPattern_.numberOfLostTrackerHits(HitPattern::MISSING_OUTER_HITS);
const auto tot = valid + lost + lostIn + lostOut;
if (tot == 0) {
return -1;
}
return valid / (double)(tot);
}
//Track algorithm
inline void TrackBase::setAlgorithm(const TrackBase::TrackAlgorithm a) {
algorithm_ = a;
algoMask_.reset();
setOriginalAlgorithm(a);
}
inline void TrackBase::setOriginalAlgorithm(const TrackBase::TrackAlgorithm a) {
originalAlgorithm_ = a;
algoMask_.set(a);
}
inline int TrackBase::qualityMask() const { return quality_; }
inline void TrackBase::setQualityMask(int qualMask) { quality_ = qualMask; }
inline void TrackBase::setNLoops(signed char value) { nLoops_ = value; }
inline bool TrackBase::isLooper() const { return (nLoops_ > 0); }
inline signed char TrackBase::nLoops() const { return nLoops_; }
} // namespace reco
#endif