-
Notifications
You must be signed in to change notification settings - Fork 4.3k
/
Copy pathKFbase.cc
920 lines (775 loc) · 35.7 KB
/
KFbase.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
///=== This is the base class for the Kalman Combinatorial Filter track fit algorithm.
///=== Written by: S. Summers, K. Uchida, M. Pesaresi, I.Tomalin
#include "L1Trigger/TrackFindingTMTT/interface/KFbase.h"
#include "L1Trigger/TrackFindingTMTT/interface/Utility.h"
#include "L1Trigger/TrackFindingTMTT/interface/TP.h"
#include "L1Trigger/TrackFindingTMTT/interface/KalmanState.h"
#include "L1Trigger/TrackFindingTMTT/interface/StubKiller.h"
#include "L1Trigger/TrackFindingTMTT/interface/PrintL1trk.h"
#include "FWCore/ServiceRegistry/interface/Service.h"
#include "CommonTools/UtilAlgos/interface/TFileService.h"
#include "DataFormats/Math/interface/deltaPhi.h"
#include "TMatrixD.h"
#include <algorithm>
#include <functional>
#include <fstream>
#include <iomanip>
#include <atomic>
#include <sstream>
using namespace std;
namespace tmtt {
/* Initialize cfg parameters */
KFbase::KFbase(const Settings *settings, const uint nHelixPar, const string &fitterName, const uint nMeas)
: TrackFitGeneric(settings, fitterName) {
nHelixPar_ = nHelixPar;
nMeas_ = nMeas;
numEtaRegions_ = settings->numEtaRegions();
}
/* Do track fit */
L1fittedTrack KFbase::fit(const L1track3D &l1track3D) {
iPhiSec_ = l1track3D.iPhiSec();
iEtaReg_ = l1track3D.iEtaReg();
resetStates();
numUpdateCalls_ = 0;
vector<Stub *> stubs = l1track3D.stubs();
auto orderByLayer = [](const Stub *a, const Stub *b) { return bool(a->layerId() < b->layerId()); };
sort(stubs.begin(), stubs.end(), orderByLayer); // Makes debug printout pretty.
//TP
const TP *tpa(nullptr);
if (l1track3D.matchedTP()) {
tpa = l1track3D.matchedTP();
}
tpa_ = tpa;
//track information dump
if (settings_->kalmanDebugLevel() >= 1) {
PrintL1trk() << "===============================================================================";
std::stringstream text;
text << std::fixed << std::setprecision(4);
text << "Input track cand: [phiSec,etaReg]=[" << l1track3D.iPhiSec() << "," << l1track3D.iEtaReg() << "]";
text << " HT(m,c)=(" << l1track3D.cellLocationHT().first << "," << l1track3D.cellLocationHT().second
<< ") q/pt=" << l1track3D.qOverPt() << " tanL=" << l1track3D.tanLambda() << " z0=" << l1track3D.z0()
<< " phi0=" << l1track3D.phi0() << " nStubs=" << l1track3D.numStubs() << " d0=" << l1track3D.d0();
PrintL1trk() << text.str();
if (not settings_->hybrid())
printTP(tpa);
if (settings_->kalmanDebugLevel() >= 2) {
printStubLayers(stubs, l1track3D.iEtaReg());
printStubs(stubs);
}
}
//Kalman Filter
const KalmanState *cand = doKF(l1track3D, stubs, tpa);
//return L1fittedTrk for the selected state (if KF produced one it was happy with).
if (cand != nullptr) {
// Get track helix params.
TVectorD trackPars = trackParams(cand);
double d0 = (nHelixPar_ == 5) ? trackPars[D0] : 0.;
L1fittedTrack fitTrk(settings_,
&l1track3D,
cand->stubs(),
cand->hitPattern(),
trackPars[QOVERPT],
d0,
trackPars[PHI0],
trackPars[Z0],
trackPars[T],
cand->chi2rphi(),
cand->chi2rz(),
nHelixPar_);
// Store supplementary info, specific to KF fitter.
fitTrk.setInfoKF(cand->nSkippedLayers(), numUpdateCalls_);
// If doing 5 parameter fit, optionally also calculate helix params & chi2 with beam-spot constraint applied,
// and store inside L1fittedTrack object.
if (settings_->kalmanAddBeamConstr()) {
if (nHelixPar_ == 5) {
double chi2rphi_bcon = 0.;
TVectorD trackPars_bcon = trackParams_BeamConstr(cand, chi2rphi_bcon);
// Check scaled chi2 cut
vector<double> kfLayerVsChiSqCut = settings_->kfLayerVsChiSq5();
double chi2scaled = chi2rphi_bcon / settings_->kalmanChi2RphiScale() + fitTrk.chi2rz();
bool accepted = true;
if (chi2scaled > kfLayerVsChiSqCut[cand->nStubLayers()])
accepted = false;
fitTrk.setBeamConstr(trackPars_bcon[QOVERPT], trackPars_bcon[PHI0], chi2rphi_bcon, accepted);
}
}
// Fitted track params must lie in same sector as HT originally found track in.
if (!settings_->hybrid()) { // consistentSector() function not yet working for Hybrid.
// Bodge to take into account digitisation in sector consistency check.
if (settings_->enableDigitize())
fitTrk.digitizeTrack("KF4ParamsComb");
if (!fitTrk.consistentSector()) {
if (settings_->kalmanDebugLevel() >= 1)
PrintL1trk() << "Track rejected by sector consistency test";
L1fittedTrack rejectedTrk;
return rejectedTrk;
}
}
return fitTrk;
} else { // Track rejected by fitter
if (settings_->kalmanDebugLevel() >= 1) {
bool goodTrack = (tpa && tpa->useForAlgEff()); // Matches truth particle.
if (goodTrack) {
int tpin = tpa->index();
PrintL1trk() << "TRACK LOST: eta=" << l1track3D.iEtaReg() << " pt=" << l1track3D.pt() << " tp=" << tpin;
for (auto stub : stubs) {
int kalmanLay =
this->kalmanLayer(l1track3D.iEtaReg(), stub->layerIdReduced(), stub->barrel(), stub->r(), stub->z());
std::stringstream text;
text << std::fixed << std::setprecision(4);
text << " Stub: lay_red=" << stub->layerIdReduced() << " KFlay=" << kalmanLay << " r=" << stub->r()
<< " z=" << stub->z() << " assoc TPs =";
for (const TP *tp_i : stub->assocTPs())
text << " " << tp_i->index();
PrintL1trk() << text.str();
if (stub->assocTPs().empty())
PrintL1trk() << " none";
}
PrintL1trk() << "=====================";
}
}
//dump on the missed TP for efficiency calculation.
if (settings_->kalmanDebugLevel() >= 3) {
if (tpa && tpa->useForAlgEff()) {
PrintL1trk() << "TP for eff. missed addr. index : " << tpa << " " << tpa->index();
printStubs(stubs);
}
}
L1fittedTrack rejectedTrk;
return rejectedTrk;
}
}
/* Do track fit (internal function) */
const KalmanState *KFbase::doKF(const L1track3D &l1track3D, const vector<Stub *> &stubs, const TP *tpa) {
const KalmanState *finished_state = nullptr;
map<unsigned int, const KalmanState *, std::greater<unsigned int>>
best_state_by_nstubs; // Best state (if any) for each viable no. of stubs on track value.
// seed helix params & their covariance.
TVectorD x0 = seedX(l1track3D);
TMatrixD pxx0 = seedC(l1track3D);
TMatrixD K(nHelixPar_, 2);
TMatrixD dcov(2, 2);
const KalmanState *state0 = mkState(l1track3D, 0, -1, nullptr, x0, pxx0, K, dcov, nullptr, 0, 0);
// internal containers - i.e. the state FIFO. Contains estimate of helix params in last/next layer, with multiple entries if there were multiple stubs, yielding multiple states.
vector<const KalmanState *> new_states;
vector<const KalmanState *> prev_states;
prev_states.push_back(state0);
// Get dead layers, if any.
bool remove2PSCut = settings_->kalmanRemove2PScut();
set<unsigned> kfDeadLayers = kalmanDeadLayers(remove2PSCut);
// arrange stubs into Kalman layers according to eta region
int etaReg = l1track3D.iEtaReg();
map<int, vector<Stub *>> layerStubs;
for (auto stub : stubs) {
// Get Kalman encoded layer ID for this stub.
int kalmanLay = this->kalmanLayer(etaReg, stub->layerIdReduced(), stub->barrel(), stub->r(), stub->z());
if (kalmanLay != invalidKFlayer_) {
if (layerStubs[kalmanLay].size() < settings_->kalmanMaxStubsPerLayer()) {
layerStubs[kalmanLay].push_back(stub);
} else {
// If too many stubs, FW keeps the last stub.
layerStubs[kalmanLay].back() = stub;
}
}
}
// iterate using state->nextLayer() to determine next Kalman layer(s) to add stubs from
constexpr unsigned int nTypicalLayers = 6; // Number of tracker layers a typical track can pass through.
// If user asked to add up to 7 layers to track, increase number of iterations by 1.
const unsigned int maxIterations = std::max(nTypicalLayers, settings_->kalmanMaxNumStubs());
for (unsigned iteration = 0; iteration < maxIterations; iteration++) {
bool easy = (l1track3D.numStubs() < settings_->kalmanMaxStubsEasy());
unsigned int kalmanMaxSkipLayers =
easy ? settings_->kalmanMaxSkipLayersEasy() : settings_->kalmanMaxSkipLayersHard();
// update each state from previous iteration (or seed) using stubs in next Kalman layer
vector<const KalmanState *>::const_iterator i_state = prev_states.begin();
for (; i_state != prev_states.end(); i_state++) {
const KalmanState *the_state = *i_state;
unsigned int layer = the_state->nextLayer(); // Get KF layer where stubs to be searched for next
unsigned nSkipped = the_state->nSkippedLayers();
// If this layer is known to be dead, skip to the next layer (layer+1)
// The next_states_skipped will then look at layer+2
// However, if there are stubs in this layer, then don't skip (e.g. our phi/eta boundaries might not line up exactly with a dead region)
// Continue to skip until you reach a functioning layer (or a layer with stubs)
unsigned nSkippedDeadLayers = 0;
unsigned nSkippedAmbiguousLayers = 0;
while (kfDeadLayers.find(layer) != kfDeadLayers.end() && layerStubs[layer].empty()) {
layer += 1;
++nSkippedDeadLayers;
}
while (this->kalmanAmbiguousLayer(etaReg, layer) && layerStubs[layer].empty()) {
layer += 1;
++nSkippedAmbiguousLayers;
}
// containers for updated state+stub combinations
vector<const KalmanState *> next_states;
vector<const KalmanState *> next_states_skipped;
// find stubs for this layer
// (If layer > 6, this will return empty vector, so safe).
vector<Stub *> thislay_stubs = layerStubs[layer];
// find stubs for next layer if we skip a layer, except when we are on the penultimate layer,
// or we have exceeded the max skipped layers
vector<Stub *> nextlay_stubs;
// If the next layer (layer+1) is a dead layer, then proceed to the layer after next (layer+2), if possible
// Also note if we need to increase "skipped" by one more for these states
unsigned nSkippedDeadLayers_nextStubs = 0;
unsigned nSkippedAmbiguousLayers_nextStubs = 0;
if (nSkipped < kalmanMaxSkipLayers) {
if (kfDeadLayers.find(layer + 1) != kfDeadLayers.end() && layerStubs[layer + 1].empty()) {
nextlay_stubs = layerStubs[layer + 2];
nSkippedDeadLayers_nextStubs++;
} else if (this->kalmanAmbiguousLayer(etaReg, layer + 1) && layerStubs[layer + 1].empty()) {
nextlay_stubs = layerStubs[layer + 2];
nSkippedAmbiguousLayers_nextStubs++;
} else {
nextlay_stubs = layerStubs[layer + 1];
}
}
// If track was not rejected by isGoodState() is previous iteration, failure here usually means the tracker ran out of layers to explore.
// (Due to "kalmanLay" not having unique ID for each layer within a given eta sector).
if (settings_->kalmanDebugLevel() >= 2 && best_state_by_nstubs.empty() && thislay_stubs.empty() &&
nextlay_stubs.empty())
PrintL1trk() << "State is lost by start of iteration " << iteration
<< " : #thislay_stubs=" << thislay_stubs.size() << " #nextlay_stubs=" << nextlay_stubs.size()
<< " layer=" << layer << " eta=" << l1track3D.iEtaReg();
// If we skipped over a dead layer, only increment "nSkipped" after the stubs in next+1 layer have been obtained
nSkipped += nSkippedDeadLayers;
nSkipped += nSkippedAmbiguousLayers;
// check to guarantee no fewer than 2PS hits per state at iteration 1
// (iteration 0 will always include a PS hit, but iteration 1 could use 2S hits
// unless we include this)
if (iteration == 1 && !remove2PSCut) {
vector<Stub *> temp_thislaystubs;
vector<Stub *> temp_nextlaystubs;
for (auto stub : thislay_stubs) {
if (stub->psModule())
temp_thislaystubs.push_back(stub);
}
for (auto stub : nextlay_stubs) {
if (stub->psModule())
temp_nextlaystubs.push_back(stub);
}
thislay_stubs = temp_thislaystubs;
nextlay_stubs = temp_nextlaystubs;
}
// loop over each stub in this layer and check for compatibility with this state
for (unsigned i = 0; i < thislay_stubs.size(); i++) {
Stub *stub = thislay_stubs[i];
// Update helix params by adding this stub.
const KalmanState *new_state = kalmanUpdate(nSkipped, layer, stub, the_state, tpa);
// Cut on track chi2, pt etc.
if (isGoodState(*new_state))
next_states.push_back(new_state);
}
// loop over each stub in next layer if we skip, and check for compatibility with this state
for (unsigned i = 0; i < nextlay_stubs.size(); i++) {
Stub *stub = nextlay_stubs[i];
const KalmanState *new_state =
kalmanUpdate(nSkipped + 1 + nSkippedDeadLayers_nextStubs + nSkippedAmbiguousLayers_nextStubs,
layer + 1 + nSkippedDeadLayers_nextStubs + nSkippedAmbiguousLayers_nextStubs,
stub,
the_state,
tpa);
if (isGoodState(*new_state))
next_states_skipped.push_back(new_state);
}
// post Kalman filter local sorting per state
auto orderByChi2 = [](const KalmanState *a, const KalmanState *b) {
return bool(a->chi2scaled() < b->chi2scaled());
};
sort(next_states.begin(), next_states.end(), orderByChi2);
sort(next_states_skipped.begin(), next_states_skipped.end(), orderByChi2);
new_states.insert(new_states.end(), next_states.begin(), next_states.end());
new_states.insert(new_states.end(), next_states_skipped.begin(), next_states_skipped.end());
} //end of state loop
// copy new_states into prev_states for next iteration or end if we are on
// last iteration by clearing all states and making final state selection
auto orderByMinSkipChi2 = [](const KalmanState *a, const KalmanState *b) {
return bool((a->chi2scaled()) * (a->nSkippedLayers() + 1) < (b->chi2scaled()) * (b->nSkippedLayers() + 1));
};
sort(new_states.begin(), new_states.end(), orderByMinSkipChi2); // Sort by chi2*(skippedLayers+1)
unsigned int nStubs = iteration + 1;
// Success. We have at least one state that passes all cuts. Save best state found with this number of stubs.
if (nStubs >= settings_->kalmanMinNumStubs() && not new_states.empty())
best_state_by_nstubs[nStubs] = new_states[0];
if (nStubs == settings_->kalmanMaxNumStubs()) {
// We're done.
prev_states.clear();
new_states.clear();
break;
} else {
// Continue iterating.
prev_states = new_states;
new_states.clear();
}
}
if (not best_state_by_nstubs.empty()) {
// Select state with largest number of stubs.
finished_state = best_state_by_nstubs.begin()->second; // First element has largest number of stubs.
if (settings_->kalmanDebugLevel() >= 1) {
std::stringstream text;
text << std::fixed << std::setprecision(4);
text << "Track found! final state selection: nLay=" << finished_state->nStubLayers()
<< " hitPattern=" << std::hex << finished_state->hitPattern() << std::dec
<< " phiSec=" << l1track3D.iPhiSec() << " etaReg=" << l1track3D.iEtaReg() << " HT(m,c)=("
<< l1track3D.cellLocationHT().first << "," << l1track3D.cellLocationHT().second << ")";
TVectorD y = trackParams(finished_state);
text << " q/pt=" << y[QOVERPT] << " tanL=" << y[T] << " z0=" << y[Z0] << " phi0=" << y[PHI0];
if (nHelixPar_ == 5)
text << " d0=" << y[D0];
text << " chosen from states:";
for (const auto &p : best_state_by_nstubs)
text << " " << p.second->chi2() << "/" << p.second->nStubLayers();
PrintL1trk() << text.str();
}
} else {
if (settings_->kalmanDebugLevel() >= 1) {
PrintL1trk() << "Track lost";
}
}
return finished_state;
}
/*--- Update a helix state by adding a stub. */
const KalmanState *KFbase::kalmanUpdate(
unsigned nSkipped, unsigned int layer, Stub *stub, const KalmanState *state, const TP *tpa) {
if (settings_->kalmanDebugLevel() >= 4) {
PrintL1trk() << "---------------";
PrintL1trk() << "kalmanUpdate";
PrintL1trk() << "---------------";
printStub(stub);
}
numUpdateCalls_++; // For monitoring, count calls to updator per track.
// Helix params & their covariance.
TVectorD vecX = state->vectorX();
TMatrixD matC = state->matrixC();
if (state->barrel() && !stub->barrel()) {
if (settings_->kalmanDebugLevel() >= 4) {
PrintL1trk() << "STATE BARREL TO ENDCAP BEFORE ";
PrintL1trk() << "state : " << vecX[0] << " " << vecX[1] << " " << vecX[2] << " " << vecX[3];
PrintL1trk() << "cov(x): ";
matC.Print();
}
if (settings_->kalmanDebugLevel() >= 4) {
PrintL1trk() << "STATE BARREL TO ENDCAP AFTER ";
PrintL1trk() << "state : " << vecX[0] << " " << vecX[1] << " " << vecX[2] << " " << vecX[3];
PrintL1trk() << "cov(x): ";
matC.Print();
}
}
// Matrix to propagate helix reference point from one layer to next.
TMatrixD matF = matrixF(stub, state);
TMatrixD matFtrans(TMatrixD::kTransposed, matF);
if (settings_->kalmanDebugLevel() >= 4) {
PrintL1trk() << "matF";
matF.Print();
}
// Multiply matrices to get helix params relative to reference point at next layer.
TVectorD vecXref = matF * vecX;
if (settings_->kalmanDebugLevel() >= 4) {
PrintL1trk() << "vecFref = [";
for (unsigned i = 0; i < nHelixPar_; i++)
PrintL1trk() << vecXref[i] << ", ";
PrintL1trk() << "]";
}
// Get stub residuals.
TVectorD delta = residual(stub, vecXref, state->candidate().qOverPt());
if (settings_->kalmanDebugLevel() >= 4) {
PrintL1trk() << "delta = " << delta[0] << ", " << delta[1];
}
// Derivative of predicted (phi,z) intercept with layer w.r.t. helix params.
TMatrixD matH = matrixH(stub);
if (settings_->kalmanDebugLevel() >= 4) {
PrintL1trk() << "matH";
matH.Print();
}
if (settings_->kalmanDebugLevel() >= 4) {
PrintL1trk() << "previous state covariance";
matC.Print();
}
// Get scattering contribution to helix parameter covariance (currently zero).
TMatrixD matScat(nHelixPar_, nHelixPar_);
// Get covariance on helix parameters at new reference point including scattering..
TMatrixD matCref = matF * matC * matFtrans + matScat;
if (settings_->kalmanDebugLevel() >= 4) {
PrintL1trk() << "matCref";
matCref.Print();
}
// Get hit position covariance matrix.
TMatrixD matV = matrixV(stub, state);
if (settings_->kalmanDebugLevel() >= 4) {
PrintL1trk() << "matV";
matV.Print();
}
TMatrixD matRinv = matrixRinv(matH, matCref, matV);
if (settings_->kalmanDebugLevel() >= 4) {
PrintL1trk() << "matRinv";
matRinv.Print();
}
// Calculate Kalman Gain matrix.
TMatrixD matK = getKalmanGainMatrix(matH, matCref, matRinv);
if (settings_->kalmanDebugLevel() >= 4) {
PrintL1trk() << "matK";
matK.Print();
}
// Update helix state & its covariance matrix with new stub.
TVectorD new_vecX(nHelixPar_);
TMatrixD new_matC(nHelixPar_, nHelixPar_);
adjustState(matK, matCref, vecXref, matH, delta, new_vecX, new_matC);
// Update track fit chi2 with new stub.
double new_chi2rphi = 0, new_chi2rz = 0;
this->adjustChi2(state, matRinv, delta, new_chi2rphi, new_chi2rz);
if (settings_->kalmanDebugLevel() >= 4) {
if (nHelixPar_ == 4)
PrintL1trk() << "adjusted x = " << new_vecX[0] << ", " << new_vecX[1] << ", " << new_vecX[2] << ", "
<< new_vecX[3];
else if (nHelixPar_ == 5)
PrintL1trk() << "adjusted x = " << new_vecX[0] << ", " << new_vecX[1] << ", " << new_vecX[2] << ", "
<< new_vecX[3] << ", " << new_vecX[4];
PrintL1trk() << "adjusted C ";
new_matC.Print();
PrintL1trk() << "adjust chi2rphi=" << new_chi2rphi << " chi2rz=" << new_chi2rz;
}
const KalmanState *new_state = mkState(
state->candidate(), nSkipped, layer, state, new_vecX, new_matC, matK, matV, stub, new_chi2rphi, new_chi2rz);
return new_state;
}
/* Create a KalmanState, containing a helix state & next stub it is to be updated with. */
const KalmanState *KFbase::mkState(const L1track3D &candidate,
unsigned nSkipped,
unsigned layer,
const KalmanState *last_state,
const TVectorD &vecX,
const TMatrixD &matC,
const TMatrixD &matK,
const TMatrixD &matV,
Stub *stub,
double chi2rphi,
double chi2rz) {
auto new_state = std::make_unique<const KalmanState>(
settings_, candidate, nSkipped, layer, last_state, vecX, matC, matK, matV, stub, chi2rphi, chi2rz);
const KalmanState *p_new_state = new_state.get();
listAllStates_.push_back(std::move(new_state)); // Vector keeps ownership of all states.
return p_new_state;
}
/* Product of H*C*H(transpose) (where C = helix covariance matrix) */
TMatrixD KFbase::matrixHCHt(const TMatrixD &matH, const TMatrixD &matC) const {
TMatrixD matHtrans(TMatrixD::kTransposed, matH);
return matH * matC * matHtrans;
}
/* Get inverted Kalman R matrix: inverse(V + HCHt) */
TMatrixD KFbase::matrixRinv(const TMatrixD &matH, const TMatrixD &matCref, const TMatrixD &matV) const {
TMatrixD matHCHt = matrixHCHt(matH, matCref);
TMatrixD matR = matV + matHCHt;
TMatrixD matRinv(2, 2);
if (matR.Determinant() > 0) {
matRinv = TMatrixD(TMatrixD::kInverted, matR);
} else {
// Protection against rare maths instability.
const TMatrixD unitMatrix(TMatrixD::kUnit, TMatrixD(nHelixPar_, nHelixPar_));
const double big = 9.9e9;
matRinv = big * unitMatrix;
}
if (settings_->kalmanDebugLevel() >= 4) {
PrintL1trk() << "matHCHt";
matHCHt.Print();
PrintL1trk() << "matR";
matR.Print();
}
return matRinv;
}
/* Determine Kalman gain matrix K */
TMatrixD KFbase::getKalmanGainMatrix(const TMatrixD &matH, const TMatrixD &matCref, const TMatrixD &matRinv) const {
TMatrixD matHtrans(TMatrixD::kTransposed, matH);
TMatrixD matCrefht = matCref * matHtrans;
TMatrixD matK = matCrefht * matRinv;
return matK;
}
/* Calculate stub residual w.r.t. helix */
TVectorD KFbase::residual(const Stub *stub, const TVectorD &vecX, double candQoverPt) const {
TVectorD vd = vectorM(stub); // Get (phi relative to sector, z) of hit.
TMatrixD h = matrixH(stub);
TVectorD hx = h * vecX; // Get intercept of helix with layer (linear approx).
TVectorD delta = vd - hx;
// Calculate higher order corrections to residuals.
// TO DO: Check if these could be determined using Tracklet/HT input track helix params,
// so only need applying at input to KF, instead of very iteration?
if (not settings_->kalmanHOfw()) {
TVectorD correction(2);
float inv2R = (settings_->invPtToInvR()) * 0.5 * candQoverPt;
float tanL = vecX[T];
float z0 = vecX[Z0];
float deltaS = 0.;
if (settings_->kalmanHOhelixExp()) {
// Higher order correction correction to circle expansion for improved accuracy at low Pt.
double corr = stub->r() * inv2R;
// N.B. In endcap 2S, this correction to correction[0] is exactly cancelled by the deltaS-dependent correction to it below.
correction[0] += (1. / 6.) * pow(corr, 3);
deltaS = (1. / 6.) * (stub->r()) * pow(corr, 2);
correction[1] -= deltaS * tanL;
if (nHelixPar_ == 5) {
float d0 = vecX[D0];
correction[0] += (1. / 6.) * pow(d0 / stub->r(), 3); // Division by r hard in FPGA?
}
}
if ((not stub->barrel()) && not(stub->psModule())) {
// These corrections rely on inside --> outside tracking, so r-z track params in 2S modules known.
float rShift = (stub->z() - z0) / tanL - stub->r();
if (settings_->kalmanHOhelixExp())
rShift -= deltaS;
if (settings_->kalmanHOprojZcorr() == 1) {
// Add correlation term related to conversion of stub residuals from (r,phi) to (z,phi).
correction[0] += inv2R * rShift;
}
if (settings_->kalmanHOalpha() == 1) {
// Add alpha correction for non-radial 2S endcap strips..
correction[0] += stub->alpha() * rShift;
}
}
// Apply correction to residuals.
delta += correction;
}
delta[0] = reco::deltaPhi(delta[0], 0.);
return delta;
}
/* Update helix state & its covariance matrix with new stub */
void KFbase::adjustState(const TMatrixD &matK,
const TMatrixD &matCref,
const TVectorD &vecXref,
const TMatrixD &matH,
const TVectorD &delta,
TVectorD &new_vecX,
TMatrixD &new_matC) const {
new_vecX = vecXref + matK * delta;
const TMatrixD unitMatrix(TMatrixD::kUnit, TMatrixD(nHelixPar_, nHelixPar_));
TMatrixD tmp = unitMatrix - matK * matH;
new_matC = tmp * matCref;
}
/* Update track fit chi2 with new stub */
void KFbase::adjustChi2(const KalmanState *state,
const TMatrixD &matRinv,
const TVectorD &delta,
double &chi2rphi,
double &chi2rz) const {
// Change in chi2 (with r-phi/r-z correlation term included in r-phi component)
double delChi2rphi = delta[PHI] * delta[PHI] * matRinv[PHI][PHI] + 2 * delta[PHI] * delta[Z] * matRinv[PHI][Z];
double delChi2rz = delta[Z] * delta[Z] * matRinv[Z][Z];
if (settings_->kalmanDebugLevel() >= 4) {
PrintL1trk() << "delta(chi2rphi)=" << delChi2rphi << " delta(chi2rz)= " << delChi2rz;
}
chi2rphi = state->chi2rphi() + delChi2rphi;
chi2rz = state->chi2rz() + delChi2rz;
return;
}
/* Reset internal data ready for next track. */
void KFbase::resetStates() { listAllStates_.clear(); }
/* Get Kalman layer mapping (i.e. layer order in which stubs should be processed) */
unsigned int KFbase::kalmanLayer(
unsigned int iEtaReg, unsigned int layerIDreduced, bool barrel, float r, float z) const {
if (nEta_ != numEtaRegions_)
throw cms::Exception("LogicError")
<< "ERROR KFbase::getKalmanLayer hardwired value of nEta_ differs from NumEtaRegions cfg param";
unsigned int kfEtaReg; // KF VHDL eta sector def: small in barrel & large in endcap.
if (iEtaReg < numEtaRegions_ / 2) {
kfEtaReg = numEtaRegions_ / 2 - 1 - iEtaReg;
} else {
kfEtaReg = iEtaReg - numEtaRegions_ / 2;
}
unsigned int kalmanLay =
barrel ? layerMap_[kfEtaReg][layerIDreduced].first : layerMap_[kfEtaReg][layerIDreduced].second;
// Switch back to the layermap that is consistent with current FW when "maybe layer" is not used
if (not settings_->kfUseMaybeLayers()) {
switch (kfEtaReg) {
case 6: //case 6: B1 B2+D1 D2 D3 D4 D5
if (layerIDreduced > 2) {
kalmanLay--;
}
break;
default:
break;
}
}
/*
// Fix cases where a barrel layer only partially crosses the eta sector.
// (Logically should work, but actually reduces efficiency -- INVESTIGATE).
const float barrelHalfLength = 120.;
const float barrel4Radius = 68.8;
const float barrel5Radius = 86.1;
if ( not barrel) {
switch ( kfEtaReg ) {
case 4:
if (layerIDreduced==3) { // D1
float disk1_rCut = barrel5Radius*(std::abs(z)/barrelHalfLength);
if (r > disk1_rCut) kalmanLay++;
}
break;
case 5:
if (layerIDreduced==3) { // D1
float disk1_rCut = barrel4Radius*(std::abs(z)/barrelHalfLength);
if (r > disk1_rCut) kalmanLay++;
}
if (layerIDreduced==4) { // D2
float disk2_rCut = barrel4Radius*(std::abs(z)/barrelHalfLength);
if (r > disk2_rCut) kalmanLay++;
}
break;
default:
break;
}
}
*/
return kalmanLay;
}
/*=== Check if particles in given eta sector are uncertain to go through the given KF layer. */
/*=== (If so, count layer for numbers of hit layers, but not for number of skipped layers). */
bool KFbase::kalmanAmbiguousLayer(unsigned int iEtaReg, unsigned int kfLayer) {
// Only helps in extreme forward sector, and there not significantly.
// UNDERSTAND IF CAN BE USED ELSEWHERE.
constexpr bool ambiguityMap[nEta_ / 2][nKFlayer_] = {
{false, false, false, false, false, false, false},
{false, false, false, false, false, false, false},
{false, false, false, false, false, false, false},
{false, false, false, false, false, false, false},
{false, false, false, false, false, false, false},
{false, false, true, false, false, false, false},
{true, true, false, false, false, false, false},
{true, false, false, false, false, false, false},
};
unsigned int kfEtaReg; // KF VHDL eta sector def: small in barrel & large in endcap.
if (iEtaReg < numEtaRegions_ / 2) {
kfEtaReg = numEtaRegions_ / 2 - 1 - iEtaReg;
} else {
kfEtaReg = iEtaReg - numEtaRegions_ / 2;
}
bool ambiguous = false;
if (settings_->kfUseMaybeLayers() && kfLayer < nKFlayer_)
ambiguous = ambiguityMap[kfEtaReg][kfLayer];
return ambiguous;
}
/* Adjust KF algorithm to allow for any dead tracker layers */
set<unsigned> KFbase::kalmanDeadLayers(bool &remove2PSCut) const {
// Kill scenarios described StubKiller.cc
// By which Stress Test scenario (if any) are dead modules being emulated?
const StubKiller::KillOptions killScenario = static_cast<StubKiller::KillOptions>(settings_->killScenario());
// Should TMTT tracking be modified to reduce efficiency loss due to dead modules?
const bool killRecover = settings_->killRecover();
set<pair<unsigned, bool>> deadGPlayers; // GP layer ID & boolean indicating if in barrel.
// Range of sectors chosen to cover dead regions from StubKiller.
if (killRecover) {
if (killScenario == StubKiller::KillOptions::layer5) { // barrel layer 5
if (iEtaReg_ >= 3 && iEtaReg_ <= 7 && iPhiSec_ >= 1 && iPhiSec_ <= 5) {
deadGPlayers.insert(pair<unsigned, bool>(4, true));
}
} else if (killScenario == StubKiller::KillOptions::layer1) { // barrel layer 1
if (iEtaReg_ <= 7 && iPhiSec_ >= 1 && iPhiSec_ <= 5) {
deadGPlayers.insert(pair<unsigned, bool>(1, true));
}
remove2PSCut = true;
} else if (killScenario == StubKiller::KillOptions::layer1layer2) { // barrel layers 1 & 2
if (iEtaReg_ <= 7 && iPhiSec_ >= 1 && iPhiSec_ <= 5) {
deadGPlayers.insert(pair<unsigned, bool>(1, true));
}
if (iEtaReg_ >= 1 && iEtaReg_ <= 7 && iPhiSec_ >= 1 && iPhiSec_ <= 5) {
deadGPlayers.insert(pair<unsigned, bool>(2, true));
}
remove2PSCut = true;
} else if (killScenario == StubKiller::KillOptions::layer1disk1) { // barrel layer 1 & disk 1
if (iEtaReg_ <= 7 && iPhiSec_ >= 1 && iPhiSec_ <= 5) {
deadGPlayers.insert(pair<unsigned, bool>(1, true));
}
if (iEtaReg_ <= 3 && iPhiSec_ >= 1 && iPhiSec_ <= 5) {
deadGPlayers.insert(pair<unsigned, bool>(3, false));
}
remove2PSCut = true;
}
}
set<unsigned> kfDeadLayers;
for (const auto &p : deadGPlayers) {
unsigned int layer = p.first;
bool barrel = p.second;
float r = 0.; // This fails for r-dependent parts of kalmanLayer(). FIX
float z = 999.;
unsigned int kalmanLay = this->kalmanLayer(iEtaReg_, layer, barrel, r, z);
kfDeadLayers.insert(kalmanLay);
}
return kfDeadLayers;
}
//=== Function to calculate approximation for tilted barrel modules (aka B) copied from Stub class.
float KFbase::approxB(float z, float r) const {
return settings_->bApprox_gradient() * std::abs(z) / r + settings_->bApprox_intercept();
}
/* Print truth particle */
void KFbase::printTP(const TP *tp) const {
TVectorD tpParams(5);
bool useForAlgEff(false);
if (tp) {
useForAlgEff = tp->useForAlgEff();
tpParams[QOVERPT] = tp->qOverPt();
tpParams[PHI0] = tp->phi0();
tpParams[Z0] = tp->z0();
tpParams[T] = tp->tanLambda();
tpParams[D0] = tp->d0();
}
std::stringstream text;
text << std::fixed << std::setprecision(4);
if (tp) {
text << " TP index = " << tp->index() << " useForAlgEff = " << useForAlgEff << " ";
const string helixNames[5] = {"qOverPt", "phi0", "z0", "tanL", "d0"};
for (int i = 0; i < tpParams.GetNrows(); i++) {
text << helixNames[i] << ":" << tpParams[i] << ", ";
}
text << " inv2R = " << tp->qOverPt() * settings_->invPtToInvR() * 0.5;
} else {
text << " Fake";
}
PrintL1trk() << text.str();
}
/* Print tracker layers with stubs */
void KFbase::printStubLayers(const vector<Stub *> &stubs, unsigned int iEtaReg) const {
std::stringstream text;
text << std::fixed << std::setprecision(4);
if (stubs.empty())
text << "stub layers = []\n";
else {
text << "stub layers = [ ";
for (unsigned i = 0; i < stubs.size(); i++) {
text << stubs[i]->layerId();
if (i != stubs.size() - 1)
text << ", ";
}
text << " ] ";
text << "KF stub layers = [ ";
for (unsigned j = 0; j < stubs.size(); j++) {
unsigned int kalmanLay =
this->kalmanLayer(iEtaReg, stubs[j]->layerIdReduced(), stubs[j]->barrel(), stubs[j]->r(), stubs[j]->z());
text << kalmanLay;
if (j != stubs.size() - 1)
text << ", ";
}
text << " ]\n";
}
PrintL1trk() << text.str();
}
/* Print a stub */
void KFbase::printStub(const Stub *stub) const {
std::stringstream text;
text << std::fixed << std::setprecision(4);
text << "stub ";
text << "index=" << stub->index() << " ";
text << "layerId=" << stub->layerId() << " ";
text << "r=" << stub->r() << " ";
text << "phi=" << stub->phi() << " ";
text << "z=" << stub->z() << " ";
text << "sigmaX=" << stub->sigmaPerp() << " ";
text << "sigmaZ=" << stub->sigmaPar() << " ";
text << "TPids=";
std::set<const TP *> tps = stub->assocTPs();
for (auto tp : tps)
text << tp->index() << ",";
PrintL1trk() << text.str();
}
/* Print all stubs */
void KFbase::printStubs(const vector<Stub *> &stubs) const {
for (auto &stub : stubs) {
printStub(stub);
}
}
} // namespace tmtt