-
Notifications
You must be signed in to change notification settings - Fork 4.4k
/
Copy pathMLClient.cc
653 lines (516 loc) · 26.3 KB
/
MLClient.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
#include "DQM/EcalMonitorClient/interface/MLClient.h"
#include "CondFormats/EcalObjects/interface/EcalDQMStatusHelper.h"
#include "DQM/EcalCommon/interface/EcalDQMCommonUtils.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"
#include "PhysicsTools/ONNXRuntime/interface/ONNXRuntime.h"
#include "DQM/EcalCommon/interface/MESetNonObject.h"
#include <fstream>
using namespace cms::Ort;
namespace ecaldqm {
MLClient::MLClient() : DQWorkerClient() { qualitySummaries_.insert("MLQualitySummary"); }
void MLClient::setParams(edm::ParameterSet const& _params) {
EBThreshold_ = _params.getUntrackedParameter<double>("EBThreshold");
EEpThreshold_ = _params.getUntrackedParameter<double>("EEpThreshold");
EEmThreshold_ = _params.getUntrackedParameter<double>("EEmThreshold");
EB_PUcorr_slope_ = _params.getUntrackedParameter<double>("EB_PUcorr_slope");
EB_PUcorr_intercept_ = _params.getUntrackedParameter<double>("EB_PUcorr_intercept");
EEp_PUcorr_slope_ = _params.getUntrackedParameter<double>("EEp_PUcorr_slope");
EEp_PUcorr_intercept_ = _params.getUntrackedParameter<double>("EEp_PUcorr_intercept");
EEm_PUcorr_slope_ = _params.getUntrackedParameter<double>("EEm_PUcorr_slope");
EEm_PUcorr_intercept_ = _params.getUntrackedParameter<double>("EEm_PUcorr_intercept");
if (!onlineMode_) {
MEs_.erase(std::string("MLQualitySummary"));
MEs_.erase(std::string("EventsperMLImage"));
sources_.erase(std::string("PU"));
sources_.erase(std::string("NumEvents"));
sources_.erase(std::string("DigiAllByLumi"));
sources_.erase(std::string("AELoss"));
sources_.erase(std::string("BadTowerCount"));
sources_.erase(std::string("BadTowerCountNorm"));
}
}
void MLClient::producePlots(ProcessType) {
if (!onlineMode_)
return;
nbadtowerEB = 0;
nbadtowerEE = 0;
using namespace std;
MESet& meMLQualitySummary(MEs_.at("MLQualitySummary"));
MESet& meEventsperMLImage(MEs_.at("EventsperMLImage"));
MESetNonObject const& sPU(static_cast<MESetNonObject&>(sources_.at("PU")));
MESetNonObject const& sNumEvents(static_cast<MESetNonObject&>(sources_.at("NumEvents")));
//Get the no.of events and the PU per LS calculated in OccupancyTask
int nEv = sNumEvents.getFloatValue();
double pu = sPU.getFloatValue();
//Do not compute ML quality if PU is non existent.
if (pu <= 0.) {
return;
}
uint32_t mask(1 << EcalDQMStatusHelper::PEDESTAL_ONLINE_HIGH_GAIN_RMS_ERROR |
1 << EcalDQMStatusHelper::PHYSICS_BAD_CHANNEL_WARNING |
1 << EcalDQMStatusHelper::PHYSICS_BAD_CHANNEL_ERROR);
//////////////// ML Data Preprocessing //////////////////////////////////
//Inorder to feed the data into the ML model we apply some preprocessing.
//We use the Digi Occupancy per Lumisection as the input source.
//The model was trained on each occupancy plot having 500 events.
//In apprehension of the low luminosity in the beginning of Run3, where in online DQM
//the no.of events per LS could be lower than 500, we sum the occupancies over a fixed no.of lumisections as a running sum,
//and require that the total no.of events on this summed occupancy to be atleast 200.
//(This no.of LS and the no.of events are parameters which would require tuning later)
//This summed occupancy is now the input image, which is then corrected for PileUp(PU) dependence and
//change in no.of events, which are derived from training.
//The input image is also padded by replicating the top and bottom rows so as to prevent the "edge effect"
//wherein the ML model's learning degrades near the edge of the data set it sees.
//This padding is then removed during inference on the model output.
//Get the histogram of the input digi occupancy per lumisection.
TH2F* hEEmDigiMap((sources_.at("DigiAllByLumi")).getME(0)->getTH2F());
TH2F* hEbDigiMap((sources_.at("DigiAllByLumi")).getME(1)->getTH2F());
TH2F* hEEpDigiMap((sources_.at("DigiAllByLumi")).getME(2)->getTH2F());
size_t nEBTowers = nEBEtaTowers * nEBPhiTowers; //Each EB occupancy map is of size 34x72 towers
size_t nEETowers = nEEEtaTowers * nEEPhiTowers; //Each EE occupancy map is of size 20x20 towers
//Vectors to feed into the ML network
std::vector<float> ebOccMap1dCumulPad;
std::vector<float> eemOccMap1dCumulPad;
std::vector<float> eepOccMap1dCumulPad;
//Array to store occupancy maps
std::valarray<float> ebOccMap1d(nEBTowers);
std::valarray<float> eemOccMap1d(nEETowers);
std::valarray<float> eepOccMap1d(nEETowers);
//Store the values from the input histogram into the array
//to do preprocessing
for (int i = 0; i < hEbDigiMap->GetNbinsY(); i++) { //NbinsY = 34, NbinsX = 72
for (int j = 0; j < hEbDigiMap->GetNbinsX(); j++) {
int bin = hEbDigiMap->GetBin(j + 1, i + 1);
int k = (i * nEBPhiTowers) + j;
ebOccMap1d[k] = hEbDigiMap->GetBinContent(bin);
}
}
ebOccMap1dQ.push_back(ebOccMap1d); //Queue which stores input occupancy maps for nLS lumis
for (int i = 0; i < hEEpDigiMap->GetNbinsY(); i++) { //NbinsY = 20, NbinsX = 20
for (int j = 0; j < hEEpDigiMap->GetNbinsX(); j++) {
int bin = hEEpDigiMap->GetBin(j + 1, i + 1);
int k = (i * nEEPhiTowers) + j;
eemOccMap1d[k] = hEEmDigiMap->GetBinContent(bin);
eepOccMap1d[k] = hEEpDigiMap->GetBinContent(bin);
}
}
//Queue which stores input occupancy maps for nLS lumis
eemOccMap1dQ.push_back(eemOccMap1d);
eepOccMap1dQ.push_back(eepOccMap1d);
NEventQ.push_back(nEv); //Queue which stores the no.of events per LS for nLS lumis
if (NEventQ.size() < nLS) {
return; //Should have nLS lumis to add the occupancy over.
}
if (NEventQ.size() > nLS) {
NEventQ.pop_front(); //Keep only nLS consecutive LS. Pop the first one if size greater than nLS
}
if (ebOccMap1dQ.size() > nLS) {
ebOccMap1dQ.pop_front(); //Same conditon for the input occupancy maps.
eemOccMap1dQ.pop_front();
eepOccMap1dQ.pop_front();
}
int TNum = 0;
for (size_t i = 0; i < nLS; i++) {
TNum += NEventQ[i]; //Total no.of events over nLS lumis
}
if (TNum < 400) {
return; //The total no.of events should be atleast 400 over nLS for meaningful statistics
}
//Fill the ME to monitor the trend of the total no.of events in each input image to the ML model
meEventsperMLImage.fill(getEcalDQMSetupObjects(), EcalBarrel, double(timestamp_.iLumi), double(TNum));
//Array to hold the sum of inputs, which make atleast 400 events.
std::valarray<float> ebOccMap1dCumul(0., nEBTowers);
std::valarray<float> eemOccMap1dCumul(0., nEETowers);
std::valarray<float> eepOccMap1dCumul(0., nEETowers);
//Sum the input arrays of nLS.
for (size_t i = 0; i < ebOccMap1dQ.size(); i++) {
ebOccMap1dCumul += ebOccMap1dQ[i];
eemOccMap1dCumul += eemOccMap1dQ[i];
eepOccMap1dCumul += eepOccMap1dQ[i];
}
//Applying PU correction derived from training
ebOccMap1dCumul = ebOccMap1dCumul / (EB_PUcorr_slope_ * pu + EB_PUcorr_intercept_);
eemOccMap1dCumul = eemOccMap1dCumul / (EEm_PUcorr_slope_ * pu + EEm_PUcorr_intercept_);
eepOccMap1dCumul = eepOccMap1dCumul / (EEp_PUcorr_slope_ * pu + EEp_PUcorr_intercept_);
//Scaling up to match input dimensions.
ebOccMap1dCumul = ebOccMap1dCumul * (nEBEtaTowers * nEBPhiTowers);
eemOccMap1dCumul = eemOccMap1dCumul * nEEEtaTowers * nEEPhiTowers; //(nEETowersPad * nEETowersPad);
eepOccMap1dCumul = eepOccMap1dCumul * nEEEtaTowers * nEEPhiTowers; //(nEETowersPad * nEETowersPad);
//Correction for no.of events in each input image as originally model trained with 500 events per image
ebOccMap1dCumul = ebOccMap1dCumul * (500. / TNum);
eemOccMap1dCumul = eemOccMap1dCumul * (500. / TNum);
eepOccMap1dCumul = eepOccMap1dCumul * (500. / TNum);
std::vector<std::vector<float>> ebOccMap2dCumul(nEBEtaTowers, std::vector<float>(nEBPhiTowers, 0.));
//Convert 1dCumul to 2d
for (size_t i = 0; i < nEBEtaTowers; i++) {
for (size_t j = 0; j < nEBPhiTowers; j++) {
int k = (i * nEBPhiTowers) + j;
ebOccMap2dCumul[i][j] = ebOccMap1dCumul[k];
}
}
std::vector<float> pad_top;
std::vector<float> pad_bottom;
std::vector<float> pad_left;
std::vector<float> pad_right;
pad_top = ebOccMap2dCumul[0];
pad_bottom = ebOccMap2dCumul[ebOccMap2dCumul.size() - 1];
ebOccMap2dCumul.insert(ebOccMap2dCumul.begin(), pad_top);
ebOccMap2dCumul.push_back(pad_bottom);
//// Endcaps ///
std::vector<std::vector<float>> eemOccMap2dCumul(nEEEtaTowers, std::vector<float>(nEEPhiTowers, 0.));
std::vector<std::vector<float>> eepOccMap2dCumul(nEEEtaTowers, std::vector<float>(nEEPhiTowers, 0.));
for (size_t i = 0; i < nEEEtaTowers; i++) {
for (size_t j = 0; j < nEEPhiTowers; j++) {
int k = (i * nEEPhiTowers) + j;
eemOccMap2dCumul[i][j] = eemOccMap1dCumul[k];
eepOccMap2dCumul[i][j] = eepOccMap1dCumul[k];
}
}
// EE - //
pad_top.clear();
pad_bottom.clear();
pad_left.clear();
pad_right.clear();
pad_top = eemOccMap2dCumul[0];
pad_bottom = eemOccMap2dCumul[eemOccMap2dCumul.size() - 1];
eemOccMap2dCumul.insert(eemOccMap2dCumul.begin(), pad_top);
eemOccMap2dCumul.push_back(pad_bottom);
for (auto& row : eemOccMap2dCumul) {
pad_left.push_back(row[0]);
pad_right.push_back(row[row.size() - 1]);
}
std::size_t Lindex = 0;
std::size_t Rindex = 0;
for (auto& row : eemOccMap2dCumul) {
row.insert(row.begin(), pad_left[Lindex++]);
row.insert(row.end(), pad_right[Rindex++]);
}
// EE + //
pad_top.clear();
pad_bottom.clear();
pad_top = eepOccMap2dCumul[0];
pad_bottom = eepOccMap2dCumul[eepOccMap2dCumul.size() - 1];
eepOccMap2dCumul.insert(eepOccMap2dCumul.begin(), pad_top);
eepOccMap2dCumul.push_back(pad_bottom);
for (auto& row : eepOccMap2dCumul) {
pad_left.push_back(row[0]);
pad_right.push_back(row[row.size() - 1]);
}
Lindex = 0;
Rindex = 0;
for (auto& row : eepOccMap2dCumul) {
row.insert(row.begin(), pad_left[Lindex++]);
row.insert(row.end(), pad_right[Rindex++]);
}
//The pre-processed input is now fed into the 1D input tensor vector which will go into the ML model
for (auto& row : ebOccMap2dCumul) {
ebOccMap1dCumulPad.insert(ebOccMap1dCumulPad.end(), row.begin(), row.end());
}
for (auto& row : eemOccMap2dCumul) {
eemOccMap1dCumulPad.insert(eemOccMap1dCumulPad.end(), row.begin(), row.end());
}
for (auto& row : eepOccMap2dCumul) {
eepOccMap1dCumulPad.insert(eepOccMap1dCumulPad.end(), row.begin(), row.end());
}
///// Model Inference //////
//An Autoencoder (AE) network with resnet architecture is used here which is trained on
//certified good data (EB digi occupancy) from Run 2018 data.
//On giving an input occupancy map, the encoder part of the AE compresses and reduces the input data, learning its features,
//and the decoder reconstructs the data from the encoded form into a representation as close to the original input as possible.
//We then compute the Mean squared error (MSE) between the input and output image, also called the Reconstruction Loss,
//calculated at a tower by tower basis.
//Thus, given an anomalous tower the loss should be significantly higher than the loss with respect to good towers, which the model
//has already seen --> anomaly detection.
//When calculating the loss we also apply a response correction by dividing each input and output image with the average occupancy from
//all 2018 data (also to be tuned),to accommodate the difference in response of crystals in different regions of the Ecal Barrel
//Further each loss map from each input image is then multiplied by the last N loss maps,
///so that real anomalies which persist with time are enhanced and fluctuations are suppressed.
//A quality threshold is then applied on this time multiplied loss map, to mark them as GOOD or BAD,
//after which it is stored as a quality summary ME.
///ONNX model running///
std::string instanceName{"AE-DQM-inference"};
std::string modelFilepath = edm::FileInPath("DQM/EcalMonitorClient/data/onnxModels/resnet.onnx").fullPath();
Ort::SessionOptions sessionOptions;
sessionOptions.SetIntraOpNumThreads(1);
Ort::Env env(OrtLoggingLevel::ORT_LOGGING_LEVEL_WARNING, instanceName.c_str());
Ort::Session session(env, modelFilepath.c_str(), sessionOptions);
Ort::AllocatorWithDefaultOptions allocator;
const char* inputName = session.GetInputName(0, allocator);
Ort::TypeInfo inputTypeInfo = session.GetInputTypeInfo(0);
auto inputTensorInfo = inputTypeInfo.GetTensorTypeAndShapeInfo();
std::vector<int64_t> inputDims = inputTensorInfo.GetShape();
const char* outputName = session.GetOutputName(0, allocator);
Ort::TypeInfo outputTypeInfo = session.GetOutputTypeInfo(0);
auto outputTensorInfo = outputTypeInfo.GetTensorTypeAndShapeInfo();
std::vector<int64_t> outputDims = outputTensorInfo.GetShape();
size_t TensorSize = nEBEtaTowersPad * nEBPhiTowers;
std::vector<float> ebRecoOccMap1dPad(TensorSize); //To store the output reconstructed occupancy
std::vector<const char*> inputNames{inputName};
std::vector<const char*> outputNames{outputName};
std::vector<Ort::Value> inputTensors;
std::vector<Ort::Value> outputTensors;
Ort::MemoryInfo memoryInfo =
Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault);
inputTensors.push_back(Ort::Value::CreateTensor<float>(
memoryInfo, ebOccMap1dCumulPad.data(), TensorSize, inputDims.data(), inputDims.size()));
outputTensors.push_back(Ort::Value::CreateTensor<float>(
memoryInfo, ebRecoOccMap1dPad.data(), TensorSize, outputDims.data(), outputDims.size()));
session.Run(Ort::RunOptions{nullptr},
inputNames.data(),
inputTensors.data(),
1,
outputNames.data(),
outputTensors.data(),
1);
//Endcaps
// EE- //
inputDims.clear();
outputDims.clear();
inputNames.clear();
outputNames.clear();
inputTensors.clear();
outputTensors.clear();
modelFilepath = edm::FileInPath("DQM/EcalMonitorClient/data/onnxModels/EEm_resnet2018.onnx").fullPath();
Ort::Session EEm_session(env, modelFilepath.c_str(), sessionOptions);
inputName = EEm_session.GetInputName(0, allocator);
inputTypeInfo = EEm_session.GetInputTypeInfo(0);
auto EEm_inputTensorInfo = inputTypeInfo.GetTensorTypeAndShapeInfo();
inputDims = EEm_inputTensorInfo.GetShape();
outputName = EEm_session.GetOutputName(0, allocator);
//Ort::TypeInfo
outputTypeInfo = EEm_session.GetOutputTypeInfo(0);
auto EEm_outputTensorInfo = outputTypeInfo.GetTensorTypeAndShapeInfo();
outputDims = EEm_outputTensorInfo.GetShape();
size_t EE_TensorSize = nEETowersPad * nEETowersPad;
std::vector<float> eemRecoOccMap1dPad(EE_TensorSize); //To store the output reconstructed occupancy
inputNames.push_back(inputName);
outputNames.push_back(outputName);
//Ort::MemoryInfo
memoryInfo = Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault);
inputTensors.push_back(Ort::Value::CreateTensor<float>(
memoryInfo, eemOccMap1dCumulPad.data(), EE_TensorSize, inputDims.data(), inputDims.size()));
outputTensors.push_back(Ort::Value::CreateTensor<float>(
memoryInfo, eemRecoOccMap1dPad.data(), EE_TensorSize, outputDims.data(), outputDims.size()));
EEm_session.Run(Ort::RunOptions{nullptr},
inputNames.data(),
inputTensors.data(),
1,
outputNames.data(),
outputTensors.data(),
1);
// EE+ //
inputDims.clear();
outputDims.clear();
inputNames.clear();
outputNames.clear();
inputTensors.clear();
outputTensors.clear();
modelFilepath = edm::FileInPath("DQM/EcalMonitorClient/data/onnxModels/EEp_resnet2018.onnx").fullPath();
Ort::Session EEp_session(env, modelFilepath.c_str(), sessionOptions);
inputName = EEp_session.GetInputName(0, allocator);
inputTypeInfo = EEp_session.GetInputTypeInfo(0);
auto EEp_inputTensorInfo = inputTypeInfo.GetTensorTypeAndShapeInfo();
inputDims = EEp_inputTensorInfo.GetShape();
outputName = EEp_session.GetOutputName(0, allocator);
outputTypeInfo = EEp_session.GetOutputTypeInfo(0);
auto EEp_outputTensorInfo = outputTypeInfo.GetTensorTypeAndShapeInfo();
outputDims = EEp_outputTensorInfo.GetShape();
std::vector<float> eepRecoOccMap1dPad(EE_TensorSize); //To store the output reconstructed occupancy
inputNames.push_back(inputName);
outputNames.push_back(outputName);
//Ort::MemoryInfo
memoryInfo = Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault);
inputTensors.push_back(Ort::Value::CreateTensor<float>(
memoryInfo, eepOccMap1dCumulPad.data(), EE_TensorSize, inputDims.data(), inputDims.size()));
outputTensors.push_back(Ort::Value::CreateTensor<float>(
memoryInfo, eepRecoOccMap1dPad.data(), EE_TensorSize, outputDims.data(), outputDims.size()));
EEp_session.Run(Ort::RunOptions{nullptr},
inputNames.data(),
inputTensors.data(),
1,
outputNames.data(),
outputTensors.data(),
1);
///Inference on the output from the model///
//2D Loss map to store tower by tower loss between the output (reconstructed) and input occupancies,
//Have same dimensions as the occupancy plot
std::valarray<std::valarray<float>> EBlossMap2d(std::valarray<float>(nEBPhiTowers), nEBEtaTowers);
std::valarray<std::valarray<float>> EEmlossMap2d(std::valarray<float>(nEEPhiTowers), nEEEtaTowers);
std::valarray<std::valarray<float>> EEplossMap2d(std::valarray<float>(nEEPhiTowers), nEEEtaTowers);
//1D val arrays to store row wise information corresponding to the reconstructed, input and average occupancies, and loss.
//and to do element wise (tower wise) operations on them to calculate the MSE loss between the reco and input occupancy.
std::valarray<float> EBrecoOcc1d(0., nEBPhiTowers);
std::valarray<float> EBinputOcc1d(0., nEBPhiTowers);
std::valarray<float> EBavgOcc1d(0., nEBPhiTowers);
std::valarray<float> EBloss_;
std::valarray<float> EEmrecoOcc1d(0., nEEPhiTowers);
std::valarray<float> EEminputOcc1d(0., nEEPhiTowers);
std::valarray<float> EEmavgOcc1d(0., nEEPhiTowers);
std::valarray<float> EEmloss_;
std::valarray<float> EEprecoOcc1d(0., nEEPhiTowers);
std::valarray<float> EEpinputOcc1d(0., nEEPhiTowers);
std::valarray<float> EEpavgOcc1d(0., nEEPhiTowers);
std::valarray<float> EEploss_;
std::string EBOccpath =
edm::FileInPath("DQM/EcalMonitorClient/data/MLAvgOccupancy/EB_avgocc_Run2022_500ev.dat").fullPath();
std::ifstream inFile;
double val;
inFile.open((EBOccpath).c_str());
while (inFile) {
inFile >> val;
if (inFile.eof())
break;
EBavgOcc.push_back(val);
}
inFile.close();
std::string EEmOccpath =
edm::FileInPath("DQM/EcalMonitorClient/data/MLAvgOccupancy/EEm_avgocc_Run2022_500ev.dat").fullPath();
inFile.open((EEmOccpath).c_str());
while (inFile) {
inFile >> val;
if (inFile.eof())
break;
EEmavgOcc.push_back(val);
}
inFile.close();
std::string EEpOccpath =
edm::FileInPath("DQM/EcalMonitorClient/data/MLAvgOccupancy/EEp_avgocc_Run2022_500ev.dat").fullPath();
inFile.open((EEpOccpath).c_str());
while (inFile) {
inFile >> val;
if (inFile.eof())
break;
EEpavgOcc.push_back(val);
}
inFile.close();
//Loss calculation
//Ignore the top and bottom replicated padded rows when doing inference
//by making index i run over (1,35) instead of (0,36) for EB, and over (1,21) for EE
MESet const& sAEReco(sources_.at("AEReco"));
TH2F* hEBRecoMap2d(sAEReco.getME(1)->getTH2F());
for (int i = 1; i < nEBEtaTowersPad - 1; i++) {
for (int j = 0; j < nEBPhiTowers; j++) {
int k = (i * nEBPhiTowers) + j;
int bin_ = hEBRecoMap2d->GetBin(j + 1, i);
EBrecoOcc1d[j] = ebRecoOccMap1dPad[k];
EBinputOcc1d[j] = ebOccMap1dCumulPad[k];
EBavgOcc1d[j] = EBavgOcc[k];
double content = ebRecoOccMap1dPad[k];
hEBRecoMap2d->SetBinContent(bin_, content);
}
//Calculate the MSE loss = (output-input)^2, with avg response correction
EBloss_ = std::pow((EBrecoOcc1d / EBavgOcc1d - EBinputOcc1d / EBavgOcc1d), 2);
EBlossMap2d[i - 1] = (EBloss_);
}
TH2F* hEEmRecoMap2d(sAEReco.getME(0)->getTH2F());
TH2F* hEEpRecoMap2d(sAEReco.getME(2)->getTH2F());
for (int i = 1; i < nEETowersPad - 1; i++) {
for (int j = 0; j < nEEPhiTowers; j++) {
int k = (i * nEETowersPad) + j + 1;
int bin_ = hEEmRecoMap2d->GetBin(j + 1, i);
EEmrecoOcc1d[j] = eemRecoOccMap1dPad[k];
EEminputOcc1d[j] = eemOccMap1dCumulPad[k];
EEmavgOcc1d[j] = EEmavgOcc[k];
double EEmcontent = eemRecoOccMap1dPad[k];
hEEmRecoMap2d->SetBinContent(bin_, EEmcontent);
EEprecoOcc1d[j] = eepRecoOccMap1dPad[k];
EEpinputOcc1d[j] = eepOccMap1dCumulPad[k];
EEpavgOcc1d[j] = EEpavgOcc[k];
double EEpcontent = eepRecoOccMap1dPad[k];
hEEpRecoMap2d->SetBinContent(bin_, EEpcontent);
}
//Calculate the MSE loss = (output-input)^2, with avg response correction
EEmloss_ = std::pow((EEmrecoOcc1d / EEmavgOcc1d - EEminputOcc1d / EEmavgOcc1d), 2);
EEmlossMap2d[i - 1] = (EEmloss_);
EEploss_ = std::pow((EEprecoOcc1d / EEpavgOcc1d - EEpinputOcc1d / EEpavgOcc1d), 2);
EEplossMap2d[i - 1] = (EEploss_);
}
//Store each loss map from the output in the queue
EBlossMap2dQ.push_back(EBlossMap2d);
EEmlossMap2dQ.push_back(EEmlossMap2d);
EEplossMap2dQ.push_back(EEplossMap2d);
//Keep exactly nLSloss loss maps to multiply
if (EBlossMap2dQ.size() > nLSloss) {
EBlossMap2dQ.pop_front();
EEmlossMap2dQ.pop_front();
EEplossMap2dQ.pop_front();
}
if (EBlossMap2dQ.size() < nLSloss) { //Exit if there are not nLSloss loss maps
return;
}
//To hold the final multiplied loss
std::valarray<std::valarray<float>> EBlossMap2dMult(std::valarray<float>(1., nEBPhiTowers), nEBEtaTowers);
std::valarray<std::valarray<float>> EEmlossMap2dMult(std::valarray<float>(1., nEEPhiTowers), nEEEtaTowers);
std::valarray<std::valarray<float>> EEplossMap2dMult(std::valarray<float>(1., nEEPhiTowers), nEEEtaTowers);
//Multiply together the last nLSloss loss maps
//So that real anomalies which persist with time are enhanced and fluctuations are suppressed.
for (size_t i = 0; i < EBlossMap2dQ.size(); i++) {
EBlossMap2dMult *= EBlossMap2dQ[i];
EEmlossMap2dMult *= EEmlossMap2dQ[i];
EEplossMap2dMult *= EEplossMap2dQ[i];
}
//Fill the AELoss ME with the values of this time multiplied loss map
//MESet const& sAELoss(sources_.at("AELoss"));
MESet& sAELoss(sources_.at("AELoss"));
TH2F* hEBLossMap2dMult(sAELoss.getME(1)->getTH2F());
for (int i = 0; i < hEBLossMap2dMult->GetNbinsY(); i++) {
for (int j = 0; j < hEBLossMap2dMult->GetNbinsX(); j++) {
int bin_ = hEBLossMap2dMult->GetBin(j + 1, i + 1);
double content = EBlossMap2dMult[i][j];
hEBLossMap2dMult->SetBinContent(bin_, content);
}
}
TH2F* hEEmLossMap2dMult(sAELoss.getME(0)->getTH2F());
TH2F* hEEpLossMap2dMult(sAELoss.getME(2)->getTH2F());
for (int i = 0; i < hEEmLossMap2dMult->GetNbinsY(); i++) {
for (int j = 0; j < hEEmLossMap2dMult->GetNbinsX(); j++) {
int bin_ = hEEmLossMap2dMult->GetBin(j + 1, i + 1);
double EEmcontent = EEmlossMap2dMult[i][j];
hEEmLossMap2dMult->SetBinContent(bin_, EEmcontent);
double EEpcontent = EEplossMap2dMult[i][j];
hEEpLossMap2dMult->SetBinContent(bin_, EEpcontent);
}
}
///////////////////// ML Quality Summary /////////////////////
//Apply the quality threshold on the time multiplied loss map stored in the ME AELoss
//If anomalous, the tower entry will have a large loss value. If good, the value will be close to zero.
MESet& meBadTowerCount(sources_.at("BadTowerCount"));
MESet& meBadTowerCountNorm(sources_.at("BadTowerCountNorm"));
MESet& meTrendMLBadTower(MEs_.at("TrendMLBadTower"));
LScount++;
MESet::const_iterator dAEnd(sAELoss.end(GetElectronicsMap()));
for (MESet::const_iterator dItr(sAELoss.beginChannel(GetElectronicsMap())); dItr != dAEnd;
dItr.toNextChannel(GetElectronicsMap())) {
DetId id(dItr->getId());
bool doMaskML(meMLQualitySummary.maskMatches(id, mask, statusManager_, GetTrigTowerMap()));
float entries(dItr->getBinContent());
int quality(doMaskML ? kMGood : kGood);
float MLThreshold;
if (id.subdetId() == EcalEndcap) {
EEDetId eeid(id);
if (eeid.zside() > 0)
MLThreshold = EEpThreshold_;
else
MLThreshold = EEmThreshold_;
} else {
MLThreshold = EBThreshold_;
}
//If a trigger tower entry is greater than the ML threshold, set it to Bad quality, otherwise Good.
if (entries > MLThreshold) {
quality = doMaskML ? kMBad : kBad;
meBadTowerCount.fill(getEcalDQMSetupObjects(), id);
if (id.subdetId() == EcalEndcap)
nbadtowerEE++;
else
nbadtowerEB++;
}
//Fill the quality summary with the quality of the given tower id.
meMLQualitySummary.setBinContent(getEcalDQMSetupObjects(), id, double(quality));
double badtowcount(meBadTowerCount.getBinContent(getEcalDQMSetupObjects(), id));
meBadTowerCountNorm.setBinContent(getEcalDQMSetupObjects(), id, double(badtowcount / LScount));
} // ML Quality Summary
meTrendMLBadTower.fill(getEcalDQMSetupObjects(), EcalBarrel, double(timestamp_.iLumi), double(nbadtowerEB));
meTrendMLBadTower.fill(getEcalDQMSetupObjects(), EcalEndcap, double(timestamp_.iLumi), double(nbadtowerEE));
} // producePlots()
DEFINE_ECALDQM_WORKER(MLClient);
} // namespace ecaldqm