-
Notifications
You must be signed in to change notification settings - Fork 4.4k
/
Copy pathTransform3DPJ.h
521 lines (415 loc) · 15.8 KB
/
Transform3DPJ.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
// @(#)root/mathcore:$Name: V02-02-29 $:$Id: Transform3DPJ.h,v 1.1 2007/05/27 20:12:30 pjanot Exp $
// Authors: W. Brown, M. Fischler, L. Moneta 2005
/**********************************************************************
* *
* Copyright (c) 2005 , LCG ROOT MathLib Team *
* *
* *
**********************************************************************/
// Header file for class Transform3DPJ
//
// Created by: Lorenzo Moneta October 21 2005
//
//
#ifndef ROOT_Math_GenVector_Transform3DPJ
#define ROOT_Math_GenVector_Transform3DPJ 1
#include "Math/GenVector/Cartesian3D.h"
#include "Math/GenVector/DisplacementVector3D.h"
#include "Math/GenVector/PositionVector3D.h"
#include "Math/GenVector/LorentzVector.h"
#include "Math/GenVector/Rotation3D.h"
#include "Math/GenVector/AxisAnglefwd.h"
#include "Math/GenVector/EulerAnglesfwd.h"
#include "Math/GenVector/Quaternionfwd.h"
#include "Math/GenVector/RotationXfwd.h"
#include "Math/GenVector/RotationYfwd.h"
#include "Math/GenVector/RotationZfwd.h"
#include "Math/GenVector/Plane3D.h"
#include <iostream>
//#include "Math/Vector3Dfwd.h"
namespace ROOT {
namespace Math {
using ROOT::Math::Plane3D;
/**
Basic 3D Transformation class describing a rotation and then a translation
The internal data are a rotation data and a 3D vector data and they can be represented
like a 3x4 matrix
The class has a template parameter the coordinate system tag of the reference system
to which the transformatioon will be applied. For example for transforming from
global to local coordinate systems, the transfrom3D has to be instantiated with the
coordinate of the traget system
@ingroup GenVector
*/
class Transform3DPJ {
public:
typedef DisplacementVector3D<Cartesian3D<double>, DefaultCoordinateSystemTag > Vector;
typedef PositionVector3D<Cartesian3D<double>, DefaultCoordinateSystemTag > Point;
enum ETransform3DMatrixIndex {
kXX = 0, kXY = 1, kXZ = 2, kDX = 3,
kYX = 4, kYY = 5, kYZ = 6, kDY = 7,
kZX = 8, kZY = 9, kZZ =10, kDZ = 11
};
/**
Default constructor (identy rotation) + zero translation
*/
Transform3DPJ()
{
SetIdentity();
}
/**
Construct given a pair of pointers or iterators defining the
beginning and end of an array of 12 Scalars
*/
template<class IT>
Transform3DPJ(IT begin, IT end)
{
SetComponents(begin,end);
}
/**
Construct from a rotation and then a translation described by a Vector
*/
Transform3DPJ( const Rotation3D & r, const Vector & v)
{
AssignFrom( r, v );
}
/**
Construct from a translation and then a rotation (inverse assignment)
*/
Transform3DPJ( const Vector & v, const Rotation3D & r)
{
// is equivalent from having first the rotation and then the translation vector rotated
AssignFrom( r, r(v) );
}
/**
Construct from a 3D Rotation only with zero translation
*/
explicit Transform3DPJ( const Rotation3D & r) {
AssignFrom(r);
}
// convenience methods for the other rotations (cannot use templates for conflict with LA)
explicit Transform3DPJ( const AxisAngle & r) {
AssignFrom(Rotation3D(r));
}
explicit Transform3DPJ( const EulerAngles & r) {
AssignFrom(Rotation3D(r));
}
explicit Transform3DPJ( const Quaternion & r) {
AssignFrom(Rotation3D(r));
}
// TO DO: implement direct methods for axial rotations without going through Rotation3D
explicit Transform3DPJ( const RotationX & r) {
AssignFrom(Rotation3D(r));
}
explicit Transform3DPJ( const RotationY & r) {
AssignFrom(Rotation3D(r));
}
explicit Transform3DPJ( const RotationZ & r) {
AssignFrom(Rotation3D(r));
}
/**
Construct from a translation only, represented by any DisplacementVector3D
and with an identity rotation
*/
template<class CoordSystem, class Tag>
explicit Transform3DPJ( const DisplacementVector3D<CoordSystem,Tag> & v) {
AssignFrom(Vector(v.X(),v.Y(),v.Z()));
}
/**
Construct from a translation only, represented by a Cartesian 3D Vector,
and with an identity rotation
*/
explicit Transform3DPJ( const Vector & v) {
AssignFrom(v);
}
//#if !defined(__MAKECINT__) && !defined(G__DICTIONARY) // this is ambigous with double * , double *
/**
Construct from a rotation (any rotation object) and then a translation
(represented by any DisplacementVector)
The requirements on the rotation and vector objects are that they can be transformed in a
Rotation3D class and in a Vector
*/
// to do : change to displacement vector3D
template <class ARotation, class CoordSystem, class Tag>
Transform3DPJ( const ARotation & r, const DisplacementVector3D<CoordSystem,Tag> & v)
{
AssignFrom( Rotation3D(r), Vector (v.X(),v.Y(),v.Z()) );
}
/**
Construct from a translation (using any type of DisplacementVector )
and then a rotation (any rotation object).
Requirement on the rotation and vector objects are that they can be transformed in a
Rotation3D class and in a Vector
*/
template <class ARotation, class CoordSystem, class Tag>
Transform3DPJ(const DisplacementVector3D<CoordSystem,Tag> & v , const ARotation & r)
{
// is equivalent from having first the rotation and then the translation vector rotated
Rotation3D r3d(r);
AssignFrom( r3d, r3d( Vector(v.X(),v.Y(),v.Z()) ) );
}
//#endif
/**
Construct transformation from one coordinate system defined by three
points (origin + two axis) to
a new coordinate system defined by other three points (origin + axis)
@param fr0 point defining origin of original reference system
@param fr1 point defining first axis of original reference system
@param fr2 point defining second axis of original reference system
@param to0 point defining origin of transformed reference system
@param to1 point defining first axis transformed reference system
@param to2 point defining second axis transformed reference system
*/
Transform3DPJ
(const Point & fr0, const Point & fr1, const Point & fr2,
const Point & to0, const Point & to1, const Point & to2 );
// use compiler generated copy ctor, copy assignmet and dtor
/**
Construct from a linear algebra matrix of size at least 3x4,
which must support operator()(i,j) to obtain elements (0,0) thru (2,3).
The 3x3 sub-block is assumed to be the rotation part and the translations vector
are described by the 4-th column
*/
template<class ForeignMatrix>
explicit Transform3DPJ(const ForeignMatrix & m) {
SetComponents(m);
}
/**
Raw constructor from 12 Scalar components
*/
Transform3DPJ(double xx, double xy, double xz, double dx,
double yx, double yy, double yz, double dy,
double zx, double zy, double zz, double dz)
{
SetComponents (xx, xy, xz, dx, yx, yy, yz, dy, zx, zy, zz, dz);
}
/**
Construct from a linear algebra matrix of size at least 3x4,
which must support operator()(i,j) to obtain elements (0,0) thru (2,3).
The 3x3 sub-block is assumed to be the rotation part and the translations vector
are described by the 4-th column
*/
template<class ForeignMatrix>
Transform3DPJ & operator= (const ForeignMatrix & m) {
SetComponents(m);
return *this;
}
// ======== Components ==============
/**
Set the 12 matrix components given an iterator to the start of
the desired data, and another to the end (12 past start).
*/
template<class IT>
void SetComponents(IT begin, IT end) {
for (int i = 0; i <12; ++i) {
fM[i] = *begin;
++begin;
}
assert (end==begin);
}
/**
Get the 12 matrix components into data specified by an iterator begin
and another to the end of the desired data (12 past start).
*/
template<class IT>
void GetComponents(IT begin, IT end) const {
for (int i = 0; i <12; ++i) {
*begin = fM[i];
++begin;
}
assert (end==begin);
}
/**
Get the 12 matrix components into data specified by an iterator begin
*/
template<class IT>
void GetComponents(IT begin) const {
std::copy ( fM, fM+12, begin );
}
/**
Set components from a linear algebra matrix of size at least 3x4,
which must support operator()(i,j) to obtain elements (0,0) thru (2,3).
The 3x3 sub-block is assumed to be the rotation part and the translations vector
are described by the 4-th column
*/
template<class ForeignMatrix>
void
SetTransformMatrix (const ForeignMatrix & m) {
fM[kXX]=m(0,0); fM[kXY]=m(0,1); fM[kXZ]=m(0,2); fM[kDX]=m(0,3);
fM[kYX]=m(1,0); fM[kYY]=m(1,1); fM[kYZ]=m(1,2); fM[kDY]=m(1,3);
fM[kZX]=m(2,0); fM[kZY]=m(2,1); fM[kZZ]=m(2,2); fM[kDZ]=m(2,3);
}
/**
Get components into a linear algebra matrix of size at least 3x4,
which must support operator()(i,j) for write access to elements
(0,0) thru (2,3).
*/
template<class ForeignMatrix>
void
GetTransformMatrix (ForeignMatrix & m) const {
m(0,0)=fM[kXX]; m(0,1)=fM[kXY]; m(0,2)=fM[kXZ]; m(0,3)=fM[kDX];
m(1,0)=fM[kYX]; m(1,1)=fM[kYY]; m(1,2)=fM[kYZ]; m(1,3)=fM[kDY];
m(2,0)=fM[kZX]; m(2,1)=fM[kZY]; m(2,2)=fM[kZZ]; m(2,3)=fM[kDZ];
}
/**
Set the components from 12 scalars
*/
void
SetComponents (double xx, double xy, double xz, double dx,
double yx, double yy, double yz, double dy,
double zx, double zy, double zz, double dz) {
fM[kXX]=xx; fM[kXY]=xy; fM[kXZ]=xz; fM[kDX]=dx;
fM[kYX]=yx; fM[kYY]=yy; fM[kYZ]=yz; fM[kDY]=dy;
fM[kZX]=zx; fM[kZY]=zy; fM[kZZ]=zz; fM[kDZ]=dz;
}
/**
Get the nine components into 12 scalars
*/
void
GetComponents (double &xx, double &xy, double &xz, double &dx,
double &yx, double &yy, double &yz, double &dy,
double &zx, double &zy, double &zz, double &dz) const {
xx=fM[kXX]; xy=fM[kXY]; xz=fM[kXZ]; dx=fM[kDX];
yx=fM[kYX]; yy=fM[kYY]; yz=fM[kYZ]; dy=fM[kDY];
zx=fM[kZX]; zy=fM[kZY]; zz=fM[kZZ]; dz=fM[kDZ];
}
/**
Get the rotation and translation vector representing the 3D transformation
*/
void GetDecomposition(Rotation3D &r, Vector &v) const;
// operations on points and vectors
/**
Transformation operation for Position Vector in Cartesian coordinate
*/
Point operator() (const Point & p) const;
/**
Transformation operation for Displacement Vectors in Cartesian coordinate
For the Displacement Vectors only the rotation applies - no translations
*/
Vector operator() (const Vector & v) const;
/**
Transformation operation for Position Vector in any coordinate system
*/
template<class CoordSystem >
PositionVector3D<CoordSystem> operator() (const PositionVector3D <CoordSystem> & p) const {
Point xyzNew = operator() ( Point(p) );
return PositionVector3D<CoordSystem> (xyzNew);
}
/**
Transformation operation for Displacement Vector in any coordinate system
*/
template<class CoordSystem >
DisplacementVector3D<CoordSystem> operator() (const DisplacementVector3D <CoordSystem> & v) const {
Vector xyzNew = operator() ( Vector(v) );
return DisplacementVector3D<CoordSystem> (xyzNew);
}
/**
Transformation operation for points between different coordinate system tags
*/
template<class CoordSystem, class Tag1, class Tag2 >
void Transform (const PositionVector3D <CoordSystem,Tag1> & p1, PositionVector3D <CoordSystem,Tag2> & p2 ) const {
Point xyzNew = operator() ( Point(p1.X(), p1.Y(), p1.Z()) );
p2.SetXYZ( xyzNew.X(), xyzNew.Y(), xyzNew.Z() );
}
/**
Transformation operation for Displacement Vector of different coordinate systems
*/
template<class CoordSystem, class Tag1, class Tag2 >
void Transform (const DisplacementVector3D <CoordSystem,Tag1> & v1, DisplacementVector3D <CoordSystem,Tag2> & v2 ) const {
Vector xyzNew = operator() ( Vector(v1.X(), v1.Y(), v1.Z() ) );
v2.SetXYZ( xyzNew.X(), xyzNew.Y(), xyzNew.Z() );
}
/**
Transformation operation for a Lorentz Vector in any coordinate system
*/
template <class CoordSystem >
LorentzVector<CoordSystem> operator() (const LorentzVector<CoordSystem> & q) const {
Vector xyzNew = operator() ( Vector(q.Vect() ) );
return LorentzVector<CoordSystem> (xyzNew.X(), xyzNew.Y(), xyzNew.Z(), q.E() );
}
/**
Transformation on a 3D plane
*/
Plane3D operator() (const Plane3D & plane) const;
// skip transformation for arbitrary vectors - not really defined if point or displacement vectors
// same but with operator *
/**
Transformation operation for Vectors. Apply same rules as operator()
depending on type of vector.
Will work only for DisplacementVector3D, PositionVector3D and LorentzVector
*/
template<class AVector >
AVector operator * (const AVector & v) const {
return operator() (v);
}
/**
multiply (combine) with another transformation in place
*/
Transform3DPJ & operator *= (const Transform3DPJ & t);
/**
multiply (combine) two transformations
*/
Transform3DPJ operator * (const Transform3DPJ & t) const {
Transform3DPJ tmp(*this);
tmp*= t;
return tmp;
}
/**
Invert the transformation in place
*/
void Invert();
/**
Return the inverse of the transformation.
*/
Transform3DPJ Inverse() const {
Transform3DPJ t(*this);
t.Invert();
return t;
}
/**
Equality/inequality operators
*/
bool operator == (const Transform3DPJ & rhs) const {
if( fM[0] != rhs.fM[0] ) return false;
if( fM[1] != rhs.fM[1] ) return false;
if( fM[2] != rhs.fM[2] ) return false;
if( fM[3] != rhs.fM[3] ) return false;
if( fM[4] != rhs.fM[4] ) return false;
if( fM[5] != rhs.fM[5] ) return false;
if( fM[6] != rhs.fM[6] ) return false;
if( fM[7] != rhs.fM[7] ) return false;
if( fM[8] != rhs.fM[8] ) return false;
if( fM[9] != rhs.fM[9] ) return false;
if( fM[10]!= rhs.fM[10] ) return false;
if( fM[11]!= rhs.fM[11] ) return false;
return true;
}
bool operator != (const Transform3DPJ & rhs) const {
return ! operator==(rhs);
}
protected:
/**
make transformation from first a rotation then a translation
*/
void AssignFrom( const Rotation3D & r, const Vector & v);
/**
make transformation from only rotations (zero translation)
*/
void AssignFrom( const Rotation3D & r);
/**
make transformation from only translation (identity rotations)
*/
void AssignFrom( const Vector & v);
/**
Set identity transformation (identity rotation , zero translation)
*/
void SetIdentity() ;
private:
double fM[12];
};
// global functions
// TODO - I/O should be put in the manipulator form
std::ostream & operator<< (std::ostream & os, const Transform3DPJ & t);
// need a function Transform = Translation * Rotation ???
} // end namespace Math
} // end namespace ROOT
#endif /* MATHCORE_BASIC3DTRANSFORMATION */