-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathMakefile_tld
134 lines (117 loc) · 4.46 KB
/
Makefile_tld
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Parameters for creating the test file
TEST_DATA_FILE := ./testdns.json.gz
TEST_DATA_LINES := 500000
# The data file which is used as input to this whole process
DATA_FILE ?= $(TEST_DATA_FILE)
DATA_FILE_DIR := $(dir $(DATA_FILE))
DATA_FILE_BASE := $(notdir $(DATA_FILE))
# Name field from the data set
NAME_DATA_FILE := $(DATA_FILE_DIR)name_$(DATA_FILE_BASE)
# Subdomain and TLD from name set
SUBTLD_DATA_FILE := $(DATA_FILE_DIR)subtld_$(DATA_FILE_BASE)
SUBTLD_SUBSET_FILE := $(DATA_FILE_DIR)tldsubset_$(DATA_FILE_BASE)
SORTED_SUBTLD_DATA_FILE := $(DATA_FILE_DIR)sorted_subtld_$(DATA_FILE_BASE)
COUNTED_SUBTLD_DATA_FILE := $(DATA_FILE_DIR)counted_subtld_$(DATA_FILE_BASE)
# Subdomain and TLD with pinyin filtered out.
NONPINYIN_DATA_FILE := $(DATA_FILE_DIR)subtld_np_$(DATA_FILE_BASE)
# Get the number of processors available for multithreaded apps
NUM_PROCS := $(shell nproc)
ifeq ($(NUM_PROCS),)
NUM_PROCS := 1
endif
# Options for Sort
SORT_MEMORY_LIMIT ?= 2G
SORT_MEMORY_FOLDER ?= $(DATA_FILE_DIR)/.sorttmp
# Print a summary of the information
$(info ** Data File $(DATA_FILE))
$(info ** [Step 1] Name Data $(NAME_DATA_FILE))
$(info ** [Step 2] SubTLD Data $(SUBTLD_DATA_FILE))
$(info ** [Step 3] Sorted SubTLD Data $(SORTED_SUBTLD_DATA_FILE))
$(info ** [Step 4] Counted SubTLD Data $(COUNTED_SUBTLD_DATA_FILE))
$(info ** [Step 5] Filtered Pinyin Data $(NONPINYIN_DATA_FILE))
$(info ** NUM PROCS $(NUM_PROCS))
$(info ** SORT OPTIONS $(SORT_MEMORY_LIMIT) $(SORT_MEMORY_FOLDER))
# Make an "all" target.
all: step5
# For the purposes of CI, have a test data set of the first TEST_DATA_LINES
# lines of the data set.
create_test_data: $(TEST_DATA_FILE)
$(TEST_DATA_FILE):
@if [ $(TEST_DATA_FILE) = $(DATA_FILE) ]; \
then \
echo "Test data cannot be created from itself"; \
exit 1; \
fi
@echo "Creating $@"
pv $(DATA_FILE) | pigz -dc | head -$(TEST_DATA_LINES) | pigz -c > $@
# Use jq with parallels to generate the data set. Use line-buffer as a speed-up
# which preserves lines (at the expense of CPU). Use a big buffer because
# otherwise jq doesn't do enough work. Finally, pipe everything to uniq
# to naively deduplicate the output.
step1: $(NAME_DATA_FILE)
$(NAME_DATA_FILE): $(DATA_FILE)
@echo "Step 1 (jq extraction): Creating $@ from $<"
pv -cN input $< | \
pigz -dc | \
parallel --no-notice --pipe --line-buffer --block 50M jq -r .name | \
pv -cN postparallel | \
uniq | \
pv -cN postuniq | \
pigz -c | \
pv -cN output > $@
# Use tldextract in python to extract the subdomain and tld. Output them as
# a colon-separated file. This filters out all domains which don't have a
# subdomain.
step2: $(SUBTLD_DATA_FILE)
$(SUBTLD_DATA_FILE): $(NAME_DATA_FILE)
@echo "Step 2 (tld extraction): Creating $@ from $<"
pv -cN input $< | \
pigz -dc | \
parallel --no-notice --pipe --line-buffer --block 50M python3 ./subtld.py | \
pv -cN postpython | \
pigz -c | \
pv -cN output > $@
# At this point we're going to sort the subdomain/TLDs ready for counting.
step3: $(SORTED_SUBTLD_DATA_FILE)
$(SORTED_SUBTLD_DATA_FILE): $(SUBTLD_DATA_FILE)
@echo "Step 3 (subdomain/tld sorting): Creating $@ from $<"
pv -cN input $< | \
pigz -dc | \
sort --parallel=$(NUM_PROCS) -S $(SORT_MEMORY_LIMIT) -T $(SORT_MEMORY_FOLDER) | \
pigz -c | \
pv -cN output > $@
# Count the instances of the subdomain/TLD pairings. This reduces the number of
# rows that we need to parse.
step4: $(COUNTED_SUBTLD_DATA_FILE)
$(COUNTED_SUBTLD_DATA_FILE): $(SORTED_SUBTLD_DATA_FILE)
@echo "Step 4 (subdomain/tld counting): Creating $@ from $<"
pv -cN input $< | \
pigz -dc | \
uniq -c | \
pigz -c | \
pv -cN output > $@
# Use the filterpinyin script to filter out domains which look like pinyin.
# This doesn't have to be perfect but we want to get rid of the most obvious ones.
step5: $(NONPINYIN_DATA_FILE)
$(NONPINYIN_DATA_FILE): $(COUNTED_SUBTLD_DATA_FILE)
@echo "Step 5 (pinyin filtering): Creating $@ from $< [SLOW]"
pv -cN input $< | \
pigz -dc | \
parallel --no-notice --pipe --line-buffer --block 50M python3 ./filterpinyin.py | \
pigz -c | \
pv -cN output > $@
# Extra targets
# Generate a random small set of lines from the subtld file to use for NTLK training
subtld_subset: $(SUBTLD_SUBSET_FILE)
$(SUBTLD_SUBSET_FILE): $(SUBTLD_DATA_FILE)
@echo "Creating $@ from $<"
pv -cN input $< | \
pigz -dc | \
perl -ne 'print if (rand() < .0005)' | \
pigz -c | \
pv -cN output > $@
# Have a target to clean up all generated files
.PHONY: clean
clean:
@rm -fv $(NAME_DATA_FILE) \
$(SUBTLD_DATA_FILE)