-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathevaler.py
257 lines (203 loc) · 9.49 KB
/
evaler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import xrange
import numpy as np
from util import log
from model import Model
from input_ops import create_input_ops, check_data_id
import tensorflow as tf
import time
import imageio
import scipy.misc as sm
class EvalManager(object):
def __init__(self):
# collection of batches (not flattened)
self._ids = []
self._predictions = []
self._groundtruths = []
def add_batch(self, id, prediction, groundtruth):
# for now, store them all (as a list of minibatch chunks)
self._ids.append(id)
self._predictions.append(prediction)
self._groundtruths.append(groundtruth)
def compute_loss(self, pred, gt):
return np.sum(np.abs(pred - gt))/np.prod(pred.shape)
def report(self):
log.info("Computing scores...")
total_loss = []
for id, pred, gt in zip(self._ids, self._predictions, self._groundtruths):
total_loss.append(self.compute_loss(pred, gt))
avg_loss = np.average(total_loss)
log.infov("Average loss : %.4f", avg_loss)
class Evaler(object):
def __init__(self,
config,
dataset,
dataset_train):
self.config = config
self.train_dir = config.train_dir
log.info("self.train_dir = %s", self.train_dir)
# --- input ops ---
self.batch_size = config.batch_size
self.dataset = dataset
self.dataset_train = dataset_train
check_data_id(dataset, config.data_id)
_, self.batch = create_input_ops(dataset, self.batch_size,
data_id=config.data_id,
is_training=False,
shuffle=False)
# --- create model ---
self.model = Model(config)
self.global_step = tf.contrib.framework.get_or_create_global_step(graph=None)
self.step_op = tf.no_op(name='step_no_op')
tf.set_random_seed(123)
session_config = tf.ConfigProto(
allow_soft_placement=True,
gpu_options=tf.GPUOptions(allow_growth=True),
device_count={'GPU': 1},
)
self.session = tf.Session(config=session_config)
# --- checkpoint and monitoring ---
self.saver = tf.train.Saver(max_to_keep=100)
self.checkpoint_path = config.checkpoint_path
if self.checkpoint_path is None and self.train_dir:
self.checkpoint_path = tf.train.latest_checkpoint(self.train_dir)
if self.checkpoint_path is None:
log.warn("No checkpoint is given. Just random initialization :-)")
self.session.run(tf.global_variables_initializer())
else:
log.info("Checkpoint path : %s", self.checkpoint_path)
def eval_run(self):
# load checkpoint
if self.checkpoint_path:
self.saver.restore(self.session, self.checkpoint_path)
log.info("Loaded from checkpoint!")
log.infov("Start Inference and Evaluation")
log.info("# of testing examples = %d", len(self.dataset))
length_dataset = len(self.dataset)
max_steps = int(length_dataset / self.batch_size) + 1
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(self.session,
coord=coord, start=True)
evaler = EvalManager()
if not (self.config.interpolate or self.config.generate or self.config.reconstruct):
raise ValueError('Please specify at least one task by indicating' +
'--reconstruct, --generate, or --interpolate.')
return
if self.config.reconstruct:
try:
for s in xrange(max_steps):
step, loss, step_time, batch_chunk, prediction_pred, prediction_gt = \
self.run_single_step(self.batch)
self.log_step_message(s, loss, step_time)
evaler.add_batch(batch_chunk['id'], prediction_pred, prediction_gt)
except Exception as e:
coord.request_stop(e)
evaler.report()
log.warning('Completed reconstruction.')
if self.config.generate:
x = self.generator(self.batch_size)
img = self.image_grid(x)
imageio.imwrite('generate_{}.png'.format(self.config.prefix), img)
log.warning('Completed generation. Generated samples are save' +
'as generate_{}.png'.format(self.config.prefix))
if self.config.interpolate:
x = self.interpolator(self.dataset_train, self.batch_size)
img = self.image_grid(x)
imageio.imwrite('interpolate_{}.png'.format(self.config.prefix), img)
log.warning('Completed interpolation. Interpolated samples are save' +
'as interpolate_{}.png'.format(self.config.prefix))
coord.request_stop()
try:
coord.join(threads, stop_grace_period_secs=3)
except RuntimeError as e:
log.warn(str(e))
log.infov("Completed evaluation.")
def generator(self, num):
z = np.random.randn(num, self.config.data_info[3])
row_sums = np.sqrt(np.sum(z ** 2, axis=0))
z = z / row_sums[np.newaxis, :]
x_hat = self.session.run(self.model.x_recon, feed_dict={self.model.z: z})
return x_hat
def interpolator(self, dataset, bs, num=15):
transit_num = num - 2
img = []
for i in range(num):
idx = np.random.randint(len(dataset.ids)-1)
img1, z1 = dataset.get_data(dataset.ids[idx])
img2, z2 = dataset.get_data(dataset.ids[idx+1])
z = []
for j in range(transit_num):
z_int = (z2 - z1) * (j+1) / (transit_num+1) + z1
z.append(z_int / np.linalg.norm(z_int))
z = np.stack(z, axis=0)
z_aug = np.concatenate((z, np.zeros((bs-transit_num, z.shape[1]))), axis=0)
x_hat = self.session.run(self.model.x_recon, feed_dict={self.model.z: z_aug})
img.append(np.concatenate((np.expand_dims(img1, 0),
x_hat[:transit_num], np.expand_dims(img2, 0))))
return np.reshape(np.stack(img, axis=0), (num*(transit_num+2),
img1.shape[0], img1.shape[1], img1.shape[2]))
def image_grid(self, x, shape=(2048, 2048)):
n = int(np.sqrt(x.shape[0]))
h, w, c = self.config.data_info[0], self.config.data_info[1], self.config.data_info[2]
I = np.zeros((n*h, n*w, c))
for i in range(n):
for j in range(n):
I[h * i:h * (i+1), w * j:w * (j+1), :] = x[i * n + j]
if c == 1:
I = I[:, :, 0]
return sm.imresize(I, shape)
def run_single_step(self, batch, step=None, is_train=True):
_start_time = time.time()
batch_chunk = self.session.run(batch)
[step, loss, all_targets, all_preds, _] = self.session.run(
[self.global_step, self.model.loss, self.model.x, self.model.x_recon, self.step_op],
feed_dict=self.model.get_feed_dict(batch_chunk)
)
_end_time = time.time()
return step, loss, (_end_time - _start_time), batch_chunk, all_preds, all_targets
def log_step_message(self, step, loss, step_time, is_train=False):
if step_time == 0: step_time = 0.001
log_fn = (is_train and log.info or log.infov)
log_fn((" [{split_mode:5s} step {step:4d}] " +
"Loss (test): {loss:.5f} " +
"({sec_per_batch:.3f} sec/batch, {instance_per_sec:.3f} instances/sec) "
).format(split_mode=(is_train and 'train' or 'val'),
step=step,
loss=loss,
sec_per_batch=step_time,
instance_per_sec=self.batch_size / step_time,
)
)
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--prefix', type=str, default='default')
parser.add_argument('--checkpoint_path', type=str, default=None)
parser.add_argument('--train_dir', type=str)
parser.add_argument('--dataset', type=str, default='MNIST', choices=['MNIST', 'SVHN', 'CIFAR10'])
parser.add_argument('--reconstruct', action='store_true', default=False)
parser.add_argument('--generate', action='store_true', default=False)
parser.add_argument('--interpolate', action='store_true', default=False)
parser.add_argument('--data_id', nargs='*', default=None)
config = parser.parse_args()
if config.dataset == 'MNIST':
import datasets.mnist as dataset
elif config.dataset == 'SVHN':
import datasets.svhn as dataset
elif config.dataset == 'CIFAR10':
import datasets.cifar10 as dataset
else:
raise ValueError(config.dataset)
config.conv_info = dataset.get_conv_info()
config.deconv_info = dataset.get_deconv_info()
dataset_train, dataset_test = dataset.create_default_splits()
m, l = dataset_train.get_data(dataset_train.ids[0])
config.data_info = np.concatenate([np.asarray(m.shape), np.asarray(l.shape)])
evaler = Evaler(config, dataset_test, dataset_train)
log.warning("dataset: %s", config.dataset)
evaler.eval_run()
if __name__ == '__main__':
main()