-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathmain.py
257 lines (230 loc) · 9.56 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
"""
Code modified from PyTorch DCGAN examples: https://github.com/pytorch/examples/tree/master/dcgan
"""
from __future__ import print_function
import argparse
import os
import numpy as np
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
from utils import weights_init, compute_acc
from network import _netG, _netD, _netD_CIFAR10, _netG_CIFAR10
from folder import ImageFolder
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', required=True, help='cifar10 | imagenet')
parser.add_argument('--dataroot', required=True, help='path to dataset')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=2)
parser.add_argument('--batchSize', type=int, default=1, help='input batch size')
parser.add_argument('--imageSize', type=int, default=128, help='the height / width of the input image to network')
parser.add_argument('--nz', type=int, default=110, help='size of the latent z vector')
parser.add_argument('--ngf', type=int, default=64)
parser.add_argument('--ndf', type=int, default=64)
parser.add_argument('--niter', type=int, default=25, help='number of epochs to train for')
parser.add_argument('--lr', type=float, default=0.0002, help='learning rate, default=0.0002')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--cuda', action='store_true', help='enables cuda')
parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use')
parser.add_argument('--netG', default='', help="path to netG (to continue training)")
parser.add_argument('--netD', default='', help="path to netD (to continue training)")
parser.add_argument('--outf', default='.', help='folder to output images and model checkpoints')
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument('--num_classes', type=int, default=10, help='Number of classes for AC-GAN')
parser.add_argument('--gpu_id', type=int, default=0, help='The ID of the specified GPU')
opt = parser.parse_args()
print(opt)
# specify the gpu id if using only 1 gpu
if opt.ngpu == 1:
os.environ['CUDA_VISIBLE_DEVICES'] = str(opt.gpu_id)
try:
os.makedirs(opt.outf)
except OSError:
pass
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
if opt.cuda:
torch.cuda.manual_seed_all(opt.manualSeed)
cudnn.benchmark = True
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
# datase t
if opt.dataset == 'imagenet':
# folder dataset
dataset = ImageFolder(
root=opt.dataroot,
transform=transforms.Compose([
transforms.Scale(opt.imageSize),
transforms.CenterCrop(opt.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]),
classes_idx=(10, 20)
)
elif opt.dataset == 'cifar10':
dataset = dset.CIFAR10(
root=opt.dataroot, download=True,
transform=transforms.Compose([
transforms.Scale(opt.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
else:
raise NotImplementedError("No such dataset {}".format(opt.dataset))
assert dataset
dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize,
shuffle=True, num_workers=int(opt.workers))
# some hyper parameters
ngpu = int(opt.ngpu)
nz = int(opt.nz)
ngf = int(opt.ngf)
ndf = int(opt.ndf)
num_classes = int(opt.num_classes)
nc = 3
# Define the generator and initialize the weights
if opt.dataset == 'imagenet':
netG = _netG(ngpu, nz)
else:
netG = _netG_CIFAR10(ngpu, nz)
netG.apply(weights_init)
if opt.netG != '':
netG.load_state_dict(torch.load(opt.netG))
print(netG)
# Define the discriminator and initialize the weights
if opt.dataset == 'imagenet':
netD = _netD(ngpu, num_classes)
else:
netD = _netD_CIFAR10(ngpu, num_classes)
netD.apply(weights_init)
if opt.netD != '':
netD.load_state_dict(torch.load(opt.netD))
print(netD)
# loss functions
dis_criterion = nn.BCELoss()
aux_criterion = nn.NLLLoss()
# tensor placeholders
input = torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize)
noise = torch.FloatTensor(opt.batchSize, nz, 1, 1)
eval_noise = torch.FloatTensor(opt.batchSize, nz, 1, 1).normal_(0, 1)
dis_label = torch.FloatTensor(opt.batchSize)
aux_label = torch.LongTensor(opt.batchSize)
real_label = 1
fake_label = 0
# if using cuda
if opt.cuda:
netD.cuda()
netG.cuda()
dis_criterion.cuda()
aux_criterion.cuda()
input, dis_label, aux_label = input.cuda(), dis_label.cuda(), aux_label.cuda()
noise, eval_noise = noise.cuda(), eval_noise.cuda()
# define variables
input = Variable(input)
noise = Variable(noise)
eval_noise = Variable(eval_noise)
dis_label = Variable(dis_label)
aux_label = Variable(aux_label)
# noise for evaluation
eval_noise_ = np.random.normal(0, 1, (opt.batchSize, nz))
eval_label = np.random.randint(0, num_classes, opt.batchSize)
eval_onehot = np.zeros((opt.batchSize, num_classes))
eval_onehot[np.arange(opt.batchSize), eval_label] = 1
eval_noise_[np.arange(opt.batchSize), :num_classes] = eval_onehot[np.arange(opt.batchSize)]
eval_noise_ = (torch.from_numpy(eval_noise_))
eval_noise.data.copy_(eval_noise_.view(opt.batchSize, nz, 1, 1))
# setup optimizer
optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
avg_loss_D = 0.0
avg_loss_G = 0.0
avg_loss_A = 0.0
for epoch in range(opt.niter):
for i, data in enumerate(dataloader, 0):
############################
# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
###########################
# train with real
netD.zero_grad()
real_cpu, label = data
batch_size = real_cpu.size(0)
if opt.cuda:
real_cpu = real_cpu.cuda()
input.data.resize_as_(real_cpu).copy_(real_cpu)
dis_label.data.resize_(batch_size).fill_(real_label)
aux_label.data.resize_(batch_size).copy_(label)
dis_output, aux_output = netD(input)
dis_errD_real = dis_criterion(dis_output, dis_label)
aux_errD_real = aux_criterion(aux_output, aux_label)
errD_real = dis_errD_real + aux_errD_real
errD_real.backward()
D_x = dis_output.data.mean()
# compute the current classification accuracy
accuracy = compute_acc(aux_output, aux_label)
# train with fake
noise.data.resize_(batch_size, nz, 1, 1).normal_(0, 1)
label = np.random.randint(0, num_classes, batch_size)
noise_ = np.random.normal(0, 1, (batch_size, nz))
class_onehot = np.zeros((batch_size, num_classes))
class_onehot[np.arange(batch_size), label] = 1
noise_[np.arange(batch_size), :num_classes] = class_onehot[np.arange(batch_size)]
noise_ = (torch.from_numpy(noise_))
noise.data.copy_(noise_.view(batch_size, nz, 1, 1))
aux_label.data.resize_(batch_size).copy_(torch.from_numpy(label))
fake = netG(noise)
dis_label.data.fill_(fake_label)
dis_output, aux_output = netD(fake.detach())
dis_errD_fake = dis_criterion(dis_output, dis_label)
aux_errD_fake = aux_criterion(aux_output, aux_label)
errD_fake = dis_errD_fake + aux_errD_fake
errD_fake.backward()
D_G_z1 = dis_output.data.mean()
errD = errD_real + errD_fake
optimizerD.step()
############################
# (2) Update G network: maximize log(D(G(z)))
###########################
netG.zero_grad()
dis_label.data.fill_(real_label) # fake labels are real for generator cost
dis_output, aux_output = netD(fake)
dis_errG = dis_criterion(dis_output, dis_label)
aux_errG = aux_criterion(aux_output, aux_label)
errG = dis_errG + aux_errG
errG.backward()
D_G_z2 = dis_output.data.mean()
optimizerG.step()
# compute the average loss
curr_iter = epoch * len(dataloader) + i
all_loss_G = avg_loss_G * curr_iter
all_loss_D = avg_loss_D * curr_iter
all_loss_A = avg_loss_A * curr_iter
all_loss_G += errG.data[0]
all_loss_D += errD.data[0]
all_loss_A += accuracy
avg_loss_G = all_loss_G / (curr_iter + 1)
avg_loss_D = all_loss_D / (curr_iter + 1)
avg_loss_A = all_loss_A / (curr_iter + 1)
print('[%d/%d][%d/%d] Loss_D: %.4f (%.4f) Loss_G: %.4f (%.4f) D(x): %.4f D(G(z)): %.4f / %.4f Acc: %.4f (%.4f)'
% (epoch, opt.niter, i, len(dataloader),
errD.data[0], avg_loss_D, errG.data[0], avg_loss_G, D_x, D_G_z1, D_G_z2, accuracy, avg_loss_A))
if i % 100 == 0:
vutils.save_image(
real_cpu, '%s/real_samples.png' % opt.outf)
print('Label for eval = {}'.format(eval_label))
fake = netG(eval_noise)
vutils.save_image(
fake.data,
'%s/fake_samples_epoch_%03d.png' % (opt.outf, epoch)
)
# do checkpointing
torch.save(netG.state_dict(), '%s/netG_epoch_%d.pth' % (opt.outf, epoch))
torch.save(netD.state_dict(), '%s/netD_epoch_%d.pth' % (opt.outf, epoch))