-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbetas.py
64 lines (53 loc) · 1.78 KB
/
betas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#coding:utf-8
from scipy.special import zeta
from scipy.optimize import minimize_scalar
import numpy as np
eps=lambda a : a+2*np.finfo(np.float32).eps
## REGRET
def explogExploration(T,A,W=None,verbose=False):
return lambda p : 2**p*np.log(T)
def expExploration(T,A,W=None,verbose=False):
return lambda p : 2**p
def logExploration(T,A,W=None,verbose=False):
return lambda p : 10*np.log(T)
## PURE EXPLORATION
def heuristicThreshold(delta, A, W=None, verbose=False):
return lambda N : np.log((1+np.log(np.sum(N)))/float(delta))
## [Kaufmann and Koolen, 2021, JMLR]
#' @param delta
#' @param A
#' @returns function of R^N into R
#' /!\ works for Gaussian distributions (probably also for subGaussian distributions)
def mixtureThreshold(delta, A, W=None, verbose=False):
K = A.shape[1]
if (W is None):
M = 1
else:
M = W.shape[1]
## corollary 10
def gG(lbd):
assert (lbd <= 1) and (lbd > 1/2)
return 2*lbd-2*lbd*np.log(4*lbd)+np.log(zeta(2*lbd))-0.5*np.log(1-lbd)
## definition 3
def Cg(x):
assert x > 0
lbd0 = 1
obj = lambda l : (gG(l)+x)/l
bounds=(1/2, 1)
res = minimize_scalar(obj, lbd0, args=(), method="bounded", bounds=bounds)
assert res.success
return obj(res.x)
## combine with union bound on [K]x[M]
gM = M*Cg(np.log((K*M)/delta)/M)
return lambda N : gM+2*np.sum(np.log(4+np.log(N)))
def elimThreshold(delta, A, W=None, verbose=False):
K = A.shape[1]
if (W is not None):
K *= W.shape[1]
return (lambda t : np.log(4*K*(t**2)/delta))
def alphaThreshold(delta, A, W=None, alf=2, verbose=False):
K = A.shape[1]
if (W is not None):
K *= W.shape[1]
z_alpha = zeta(alf)
return (lambda t : np.log(K*z_alpha*(t**alf)/delta))