-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmain_Auxloss.py
330 lines (263 loc) · 13.9 KB
/
main_Auxloss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
'''
C3SINet
Copyright (c) 2019-present NAVER Corp.
MIT license
'''
import os
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
import time
import json
import argparse
import numpy as np
import cv2
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
from etc.Tensor_logger import Logger
from data.dataloader import get_dataloader
import models
from etc.Criteria import CrossEntropyLoss2d
from etc.help_functionAux import *
from etc.utils import *
from etc.VisualizeResults import Vis_Result
import torchvision
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-c', '--config', type=str, default='./setting/SINet.json', help='JSON file for configuration')
# parser.add_argument('-o', '--optim', type=str, default="SGD", help='Adam , SGD, RMS')
# parser.add_argument('-s', '--lrsch', type=str, default="warmpoly", help='step, poly, multistep, warmpoly')
# parser.add_argument('-t', '--wd_tfmode', type=bool, default=True, help='Play with NSML!')
# parser.add_argument('-w', '--weight_decay', type=float, default=4e-5, help='value for weight decay')
parser.add_argument('-v', '--outvisdom', type=bool, default=True, help='outVisdom')
args = parser.parse_args()
############### setting framework ##########################################
with open(args.config) as fin:
config = json.load(fin)
train_config = config['train_config']
data_config = config['data_config']
args.optim = train_config["optim"]
args.lrsch = train_config["lrsch"]
args.wd_tfmode = train_config["wd_tfmode"]
args.weight_decay = train_config["weight_decay"]
others = args.weight_decay * 0.05
args.aux_w = train_config["aux_w"]
if not os.path.isdir(train_config['save_dir']):
os.mkdir(train_config['save_dir'])
print("Run : " + train_config["Model"])
if train_config["Model"].startswith('contextnet'):
model = models.__dict__[train_config["Model"]](
cls=train_config["num_classes"], width_mult=train_config["width_mult"],
input_w=data_config["input_w"], input_h=data_config["input_h"])
elif train_config["Model"].startswith('Dnc_SIN'):
model = models.__dict__[train_config["Model"]](
classes=train_config["num_classes"], p=train_config["p"], q=train_config["q"],
chnn=train_config["chnn"])
model_name = train_config["Model"]
# if args.use_nsml:
# model.BatchNorm = batchnormsync.BatchNormSync
# print("load batch sync")
#################### common model setting and opt setting #######################################
# import sys
# sys.path.append('/')
# from bn_sync.modules import batchnormsync
num_gpu = torch.cuda.device_count()
color_transform = Colorize(data_config["classes"])
if num_gpu > 0:
print("Use gpu : %d" % num_gpu)
if num_gpu > 1:
model = torch.nn.DataParallel(model)
print("make parallel")
model= model.cuda()
print("Done")
start_epoch = 0
Max_val_iou = 0.0
Max_name = ''
if train_config["resume"]:
if os.path.isfile(train_config["resume"]):
print("=> loading checkpoint '{}'".format(train_config["resume"]))
checkpoint = torch.load(train_config["resume"])
start_epoch = checkpoint['epoch']
# args.lr = checkpoint['lr']
Max_name = checkpoint['Max_name']
Max_val_iou = checkpoint['Max_val_iou']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(train_config["resume"], checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(train_config["resume"]))
###################################1stage training models ##############################################
logger, this_savedir = info_setting(train_config['save_dir'], train_config["Model"])
logger.flush()
logdir = this_savedir.split(train_config['save_dir'])[1]
nsml_logger = Logger(8097, './logs/' + logdir, False)
trainLoader, valLoader, data = get_dataloader(data_config)
weight = torch.from_numpy(data['classWeights']) # convert the numpy array to torch
if train_config["num_classes"] == 19:
weight = weight[:-1]
criteria = CrossEntropyLoss2d(weight, ignore_id=data_config["ignore_idx"]) # weight
else:
weight[-1] = 0
criteria = CrossEntropyLoss2d(weight) # weight
if num_gpu > 0:
weight = weight.cuda()
print(weight)
if num_gpu > 0:
criteria = criteria.cuda()
params_set = []
names_set = []
if args.wd_tfmode:
params_dict = dict(model.named_parameters())
for key, value in params_dict.items():
if len(value.data.shape) == 4:
if value.data.shape[1] == 1:
params_set += [{'params': [value], 'weight_decay': 0.0}]
# names_set.append(key)
else:
params_set += [{'params': [value], 'weight_decay': args.weight_decay}]
else:
params_set += [{'params': [value], 'weight_decay': others}]
#
# if "bn" in key :
# if "weight" in key:
# params_set += [{'params': [value], 'weight_decay': others}]
# names_set.append(key)
# else:
# params_set += [{'params': [value], 'weight_decay': 0.0}]
# else:
# params_set += [{'params': [value], 'weight_decay': 0.0}]
# print(names_set)
if args.optim == "Adam":
optimizer = torch.optim.Adam(params_set, train_config['learning_rate'], (0.9, 0.999), eps=1e-08,
weight_decay=args.weight_decay)
elif args.optim == "SGD":
optimizer = torch.optim.SGD(params_set, train_config["learning_rate"], momentum=0.9,
weight_decay=args.weight_decay, nesterov=True)
elif args.optim == "RMS":
optimizer = torch.optim.RMSprop(params_set, train_config["learning_rate"], alpha=0.9, momentum=0.9,
eps=1, weight_decay=args.weight_decay)
else:
if args.optim == "Adam":
optimizer = torch.optim.Adam(model.parameters(), train_config['learning_rate'], (0.9, 0.999), eps=1e-08,
weight_decay=args.weight_decay)
elif args.optim == "SGD":
optimizer = torch.optim.SGD(model.parameters(), train_config["learning_rate"], momentum=0.9,
weight_decay=args.weight_decay, nesterov=True)
elif args.optim == "RMS":
optimizer = torch.optim.RMSprop(model.parameters(), train_config["learning_rate"], alpha=0.9,
momentum=0.9, eps=1, weight_decay=args.weight_decay)
# print(str(optimizer))
init_lr = train_config["learning_rate"]
if args.lrsch == "multistep":
decay1 = train_config["epochs"] // 2
decay2 = train_config["epochs"] - train_config["epochs"] // 6
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[decay1, decay2], gamma=0.5)
elif args.lrsch == "step":
step = train_config["epochs"] // 3
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=step, gamma=0.5)
elif args.lrsch == "poly":
lambda1 = lambda epoch: pow((1 - ((epoch - 1) / train_config["epochs"])), 0.9) ## scheduler 2
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) ## scheduler 2
elif args.lrsch == "warmpoly":
scheduler = WarmupPoly(init_lr=init_lr,total_ep= train_config["epochs"],
warmup_ratio=0.05, poly_pow=0.98)
# scheduler = MyLRScheduler(initial=train_config["learning_rate"], cycle_len=train_config["cycle_len"],
# ep_cycle=train_config["epochs"]//2, ep_max=train_config["epochs"]) #__init__(self, initial=0.1, cycle_len=5, ep_cycle=50, ep_max=100):
#
print("init_lr: " + str(train_config["learning_rate"]) + " batch_size : " + str(data_config["batch_size"]) +
args.lrsch + " sch use weight and class " + str(train_config["num_classes"]))
print("logs saved in " + logdir + "\tlr sch: " + args.lrsch + "\toptim method: " + args.optim +
"\ttf style : " + str(args.wd_tfmode) + "\tbn-weight : " + str(others))
################################ start Enc train ##########################################
print("========== TRAINING ===========")
for epoch in range(start_epoch, train_config["epochs"]):
# curr_lr = scheduler.get_lr(epoch)
if args.lrsch == "poly":
scheduler.step(epoch) ## scheduler 2
elif args.lrsch =="warmpoly":
curr_lr = scheduler.get_lr(epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = curr_lr
else:
scheduler.step()
lr = 0
for param_group in optimizer.param_groups:
lr = param_group['lr']
print("Learning rate: " + str(lr))
# train for one epoch
# We consider 1 epoch with all the training data (at different scales)
start_t = time.time()
lossTr, overall_acc_tr, per_class_acc_tr, per_class_iu_tr, mIOU_tr = \
train(num_gpu, train_config["num_classes"], trainLoader, model,
criteria, optimizer, epoch, train_config["epochs"], args.aux_w )
if args.outvisdom and epoch>train_config["epochs"]*0.7:
lossVal, overall_acc_val, per_class_acc_val, per_class_iu_val, mIOU_val \
, save_input, save_target, save_est= \
val(num_gpu, train_config["num_classes"], valLoader, model, criteria, args.outvisdom)
grid_targets = torchvision.utils.make_grid(color_transform(save_est.unsqueeze(0).max(1)[1].data), nrow=6)
nsml_logger.image_summary(grid_targets,
opts=dict(title=f'VAL est (epoch: {epoch}, IOU: {str(mIOU_val)})',
caption=f'VAL est(epoch: {epoch},IOU: {str(mIOU_val)})', ))
grid_gt = torchvision.utils.make_grid(color_transform (save_target.unsqueeze(0).data), nrow=6)
nsml_logger.image_summary(grid_gt,
opts=dict(title=f'VAL gt (epoch: {epoch}, step: {str(mIOU_val)})',
caption=f'VAL gt (epoch: {epoch}, step: {str(mIOU_val)})', ))
else:
lossVal, overall_acc_val, per_class_acc_val, per_class_iu_val, mIOU_val = \
val(num_gpu, train_config["num_classes"], valLoader, model, criteria)
# evaluate on validation set
end_t = time.time()
if num_gpu>1:
this_state_dict = model.module.state_dict()
else:
this_state_dict = model.state_dict()
# save the model also
if epoch >= train_config["epochs"]*0.7 :
model_file_name = this_savedir + '/model_' + str(epoch + 1) + '.pth'
torch.save(this_state_dict, model_file_name)
if (Max_val_iou < mIOU_val):
Max_val_iou = mIOU_val
Max_name = model_file_name
print(" new max iou : " + Max_name + '\t' + str(mIOU_val))
model_best_name = this_savedir + '/bestmodel' + '.pth'
torch.save(this_state_dict, model_best_name)
with open(this_savedir + '/acc_' + str(epoch + 1) + '.txt', 'w') as log:
log.write(
"\nEpoch: %d\t Overall Acc (Tr): %.4f\t Overall Acc (Val): %.4f\t mIOU (Tr): %.4f\t mIOU (Val): %.4f" % (
epoch+1, overall_acc_tr, overall_acc_val, mIOU_tr, mIOU_val))
log.write('\n')
log.write('Per Class Training Acc: ' + str(per_class_acc_tr))
log.write('\n')
log.write('Per Class Validation Acc: ' + str(per_class_acc_val))
log.write('\n')
log.write('Per Class Training mIOU: ' + str(per_class_iu_tr))
log.write('\n')
log.write('Per Class Validation mIOU: ' + str(per_class_iu_val))
logger.write("\n%d\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.7f\t\t%.2f" % (
epoch+1, lossTr, lossVal, mIOU_tr, mIOU_val, lr, (end_t - start_t)))
logger.flush()
save_checkpoint({
'epoch': epoch+1, 'arch': str(model),
'state_dict':this_state_dict,
'optimizer': optimizer.state_dict(),
'lossTr': lossTr, 'lossVal': lossVal,
'iouTr': mIOU_tr, 'iouVal': mIOU_val,
'lr': lr,
'Max_name': Max_name, 'Max_val_iou' : Max_val_iou
}, this_savedir + '/checkpoint.pth.tar')
print("Epoch : " + str(epoch+1) + ' Details')
print("Epoch No.: %d\tTrain Loss = %.4f\tVal Loss = %.4f\t mIOU(tr) = %.4f\t mIOU(val) = %.4f \n\n" % (
epoch+1, lossTr, lossVal, mIOU_tr, mIOU_val))
info = {
'train_loss': lossTr,
'val_loss': lossVal,
'train_iou': mIOU_tr,
'val_iou': mIOU_val,
'lr': lr
}
for tag, value in info.items():
nsml_logger.scalar_summary(tag, value, epoch + 1)
logger.close()
print(" max iou : " + Max_name + '\t' + str(Max_val_iou))
Vis_Result(model_name, args.config, False, Max_name, mode="pil")