-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
158 lines (134 loc) · 4.68 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import tensorflow as tf
from utils.model import define_uniasm_model
print("Tensorflow version " + tf.__version__)
AUTO = tf.data.experimental.AUTOTUNE
strategy = tf.distribute.get_strategy()
try:
num_replicas_in_sync = strategy.num_replicas_in_sync
except:
num_replicas_in_sync = 1
print("num_replicas_in_sync: " + str(num_replicas_in_sync))
OUT_HOME = './testdata/'
TRAIN_SIZE = 86 # items in train dataset
TRAIN_FILENAMES = tf.io.gfile.glob(OUT_HOME + "train-86.tfrec")
VAL_SIZE = 10 # items in validate dataset
VAL_FILENAMES = tf.io.gfile.glob(OUT_HOME + "validate-10.tfrec")
OUT_MODEL_FILE = OUT_HOME + 'pretrain_model.h5'
OUT_HISTORY_FILE = OUT_HOME + 'pretrain_history.csv'
OUT_WEIGHTS_FILE = OUT_HOME + 'pretrain_weights.h5'
# params
VOCAB_SIZE=21000
MAX_SEQ_LEN = 256
config_json = """
{
"hidden_act": "gelu",
"hidden_size": 516,
"intermediate_size": 3072,
"max_position_embeddings": yyy,
"num_hidden_layers": 4,
"vocab_size": xxx,
"num_attention_heads": 12
}
"""
config_json = config_json.replace('xxx', str(VOCAB_SIZE))
config_json = config_json.replace('yyy', str(MAX_SEQ_LEN))
# train params
EPOCHS = 20
BATCH_SIZE = 8 * num_replicas_in_sync
STEPS_EPOCH = TRAIN_SIZE // BATCH_SIZE # steps for one epoch
STEPS_VALID = VAL_SIZE // BATCH_SIZE # steps for one validation
TOKEN_PAD = 4
TOKEN_MASK = 3
def read_tfrecord(example):
UNLABELED_TFREC_FORMAT = {
"id": tf.io.FixedLenFeature([MAX_SEQ_LEN], tf.int64),
"seg": tf.io.FixedLenFeature([MAX_SEQ_LEN], tf.int64),
}
example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT)
return (example['id'], example['seg']),0
def load_dataset(files):
dataset = tf.data.TFRecordDataset(files, num_parallel_reads=1)
dataset = dataset.map(read_tfrecord, num_parallel_calls=1)
dataset = dataset.repeat()
dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)
dataset = dataset.prefetch(AUTO)
return dataset
trainning_dataset = load_dataset(TRAIN_FILENAMES)
validation_dataset = load_dataset(VAL_FILENAMES)
# print some train data
# dataset = trainning_dataset.enumerate()
# i = 0
# c = 0
# for data in dataset:
# if i == c:
# print(data[1][0][0][0])
# print(data[1][0][1][0])
# print(data[1][0][2][0])
# print(data[1][0][3][0])
# break
# i += 1
# i += 1
with strategy.scope():
train_model = define_uniasm_model(config_json)
train_model.summary()
# learning rate
from matplotlib import pyplot as plt
LR_START = 0.00005
LR_MAX = 0.00005 * strategy.num_replicas_in_sync
LR_MIN = 0.00005
LR_RAMPUP_EPOCHS = 4
LR_SUSTAIN_EPOCHS = 0
LR_EXP_DECAY = 0.8
def lrfn(epoch):
if epoch < LR_RAMPUP_EPOCHS:
lr = (LR_MAX - LR_START) / LR_RAMPUP_EPOCHS * epoch + LR_START
elif epoch < LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS:
lr = LR_MAX
else:
lr = (LR_MAX - LR_MIN) * LR_EXP_DECAY**(epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS) + LR_MIN
return lr
lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=True)
rng = [i for i in range(EPOCHS)]
y = [lrfn(x) for x in rng]
#plt.plot(rng, y)
print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".format(y[0], max(y), y[-1]))
import os
import csv
class StoreModelHistory(tf.keras.callbacks.Callback):
def __init__(self, **kwargs):
super(StoreModelHistory, self).__init__(**kwargs)
self.wh = False
def on_train_begin(self, logs=None):
try:
os.remove(OUT_HISTORY_FILE)
except:
pass
def on_epoch_end(self, batch, logs=None):
if ('lr' not in logs.keys()):
logs.setdefault('lr',0)
logs['lr'] = tf.keras.backend.get_value(self.model.optimizer.lr)
if not self.wh:
self.wh = True
with open(OUT_HISTORY_FILE,'a') as f:
y=csv.DictWriter(f,logs.keys())
y.writeheader()
with open(OUT_HISTORY_FILE,'a') as f:
y=csv.DictWriter(f,logs.keys())
y.writerow(logs)
class ModelCheckpoint(tf.keras.callbacks.Callback):
def __init__(self):
self.lowest = 1e10
def on_epoch_end(self, epoch, logs=None):
self.model.save_weights(OUT_HOME + 'model_ep{}.h5'.format(epoch))
if logs['val_loss'] <= self.lowest:
self.lowest = logs['val_loss']
self.model.save_weights(OUT_HOME + 'best_model.h5')
csv_logger = tf.keras.callbacks.CSVLogger(OUT_HOME + 'training.log')
train_model.fit(
trainning_dataset,
validation_data=validation_dataset,
validation_steps=STEPS_VALID,
steps_per_epoch=STEPS_EPOCH,
epochs=EPOCHS,
callbacks=[lr_callback, ModelCheckpoint(), StoreModelHistory(), csv_logger]
)