-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwatermark.py
41 lines (38 loc) · 1.76 KB
/
watermark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Test the watermark performance on a random model that was not stolen from the victim model.
import torch
device = torch.device('cuda')
batch_size = 64
from data_aug.contrastive_learning_dataset import WatermarkDataset
from models.resnet_simclr import ResNetSimCLRV2, WatermarkMLP
from utils import load_victim, load_watermark, accuracy
watermark_dataset = WatermarkDataset('/ssd003/home/akaleem/data').get_dataset(
"cifar10", 2)
watermark_loader = torch.utils.data.DataLoader(
watermark_dataset, batch_size=batch_size, shuffle=True,
num_workers=2, pin_memory=True, drop_last=True)
watermark_mlp = WatermarkMLP(512, 2).to(device)
watermark_mlp = load_watermark(100, "cifar10",
watermark_mlp,
"resnet18", "infonce",
device=device)
model = ResNetSimCLRV2(base_model="resnet34",
out_dim=128, loss=None,
include_mlp=False).to(device)
model = load_victim(200, "cifar10", model,
"resnet34", "infonce",
device=device, discard_mlp=True,
watermark="False")
model.eval()
watermark_mlp.eval()
watermark_accuracy = 0
for counter, (x_batch, _) in enumerate(watermark_loader):
x_batch = torch.cat(x_batch, dim=0)
x_batch = x_batch.to(device)
logits = watermark_mlp(model(x_batch))
y_batch = torch.cat([torch.zeros(batch_size),
torch.ones(batch_size)],
dim=0).long().to(device)
top1 = accuracy(logits, y_batch, topk=(1,))
watermark_accuracy += top1[0]
watermark_accuracy /= (counter + 1)
print(f"Watermark accuracy is {watermark_accuracy.item()}.")