This repository has been archived by the owner on Nov 21, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathLinkableRing.sol
248 lines (217 loc) · 7.59 KB
/
LinkableRing.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// Copyright (c) 2016-2018 Clearmatics Technologies Ltd
// SPDX-License-Identifier: LGPL-3.0+
pragma solidity ^0.4.19;
import {bn256g1 as Curve} from './bn256g1.sol';
/*
* This contract implements the Franklin Zhang linkable ring signature
* algorithm as used by the Möbius whitepaper (IACR 2017/881):
*
* - https://eprint.iacr.org/2017/881.pdf
*
* Abstract:
*
* "Cryptocurrencies allow users to securely transfer money without
* relying on a trusted intermediary, and the transparency of their
* underlying ledgers also enables public verifiability. This openness,
* however, comes at a cost to privacy, as even though the pseudonyms
* users go by are not linked to their real-world identities, all
* movement of money among these pseudonyms is traceable. In this paper,
* we present Möbius, an Ethereum-based tumbler or mixing service. Möbius
* achieves strong notions of anonymity, as even malicious senders cannot
* identify which pseudonyms belong to the recipients to whom they sent
* money, and is able to resist denial-of-service attacks. It also
* achieves a much lower off-chain communication complexity than all
* existing tumblers, with senders and recipients needing to send only
* two initial messages in order to engage in an arbitrary number of
* transactions."
*
* However, this specific contract introduces the following differences
* in comparison to the white paper:
*
* - P256k1 replaced with ALT_BN128 (as per EIP-213)
* - The Message signed by Participants has changed
* - The Ring contract is now a library
* - The Ring Data stores the Token, Denomination and GUID
* - Ring is a fixed size
* - One SHA256 iteration per public key on verify
*
*
* Initialise Ring (R):
*
* h = H(guid...)
* for y in R
* h = H(h, y)
* m = hashToPoint(h)
*
*
* Verify Signature (σ):
*
* c = 0
* h = H(m, τ)
* for j,c,t in σ
* y = R[j]
* a = g^t + y^c
* b = m^t + τ^c
* h = H(h, a, b)
* csum += c
* h == csum
*
*
* The Verify Signature routine differs from the Mobius whitepaper and
* is slightly less efficient because it performs one H() operation
* per public key, instead of appending all items to be hashed into a
* list then hashing the result.
*
* Potential Performance improvements:
*
* - Switch to SHA3
* - Reduce number of hash operations in verify (requires more memory, but only 1 hash)
* - Reduce number of storage operations
* - Use 'identity' precompiled contract
**/
library LinkableRing {
using Curve for Curve.Point;
uint256 public constant RING_SIZE = 4;
struct Data {
Curve.Point hash;
Curve.Point[] pubkeys;
uint256[] tags;
}
/*
* The message to be signed to withdraw from the ring once it's full
**/
function message(Data storage self) internal view returns (bytes32) {
require(isFull(self));
return bytes32(self.hash.X);
}
/*
* Have all possible Tags been used, one for each Public Key
* If the ring has not been initialized it is considered Dead.
**/
function isDead(Data storage self) internal view returns (bool) {
return self.hash.X == 0 || (self.tags.length >= RING_SIZE && self.pubkeys.length >= RING_SIZE);
}
/*
* Does the X component of a Public Key exist in the Ring?
**/
function pubExists(Data storage self, uint256 pub_x) internal view returns (bool) {
for(uint i = 0; i < self.pubkeys.length; i++) {
if(self.pubkeys[i].X == pub_x) {
return true;
}
}
return false;
}
/*
* Does the X component of a Tag exist?
**/
function tagExists(Data storage self, uint256 pub_x) internal view returns (bool) {
for(uint i = 0; i < self.tags.length; i++) {
if(self.tags[i] == pub_x) {
return true;
}
}
return false;
}
function isInitialized(Data storage self) internal view returns (bool) {
return self.hash.X != 0;
}
/*
* Initialise the Ring.Data structure with a token and denomination
**/
function initialize(Data storage self, bytes32 guid) internal returns (bool) {
require(uint256(guid) != 0);
require(self.hash.X == 0);
self.hash.X = uint256(guid);
return true;
}
/*
* Maximum number of participants reached
**/
function isFull(Data storage self) internal view returns (bool) {
return self.pubkeys.length == RING_SIZE;
}
/*
* Add the Public Key to the ring as a ring participant
**/
function addParticipant(Data storage self, uint256 pub_x, uint256 pub_y)
internal returns (bool)
{
require(!isFull(self));
// accepting duplicate public keys would lock money forever
// as each linkable ring signature allows only one withdrawal
require(!pubExists(self, pub_x));
Curve.Point memory pub = Curve.Point(pub_x, pub_y);
require(pub.isOnCurve());
// Fill Ring with Public Keys
// R = {h ← H(h, y)}
self.hash.X = uint256(sha256(self.hash.X, pub.X, pub.Y));
self.pubkeys.push(pub);
if(isFull(self)) {
// h ← H(h, m)
self.hash = Curve.hashToPoint(bytes32(self.hash.X));
}
return true;
}
/*
* Save the tag, which will invalidate any future signatures from the same tag
**/
function tagAdd(Data storage self, uint256 tag_x) internal {
self.tags.push(tag_x);
}
/*
* Generates an ordered hash segment for each public key in the ring
*
* a ← g^t + y^c
* b ← h^t + τ^c
*
* Where:
*
* - y is a pubkey in R
* - h is the root hash
* - τ is the public key tag (unique per message)
* - c is a random point
*
* Each segment is used when verifying the ring:
*
* h, sum({c...}) = H(h, {(τ,a,b)...})
**/
function ringLink(uint256 previous_hash, uint256 cj, uint256 tj, Curve.Point tau, Curve.Point h, Curve.Point yj)
internal view returns (uint256 ho)
{
Curve.Point memory yc = yj.scalarMult(cj);
// a ← g^t + y^c
Curve.Point memory a = Curve.scalarBaseMult(tj).pointAdd(yc);
// b ← h^t + τ^c
Curve.Point memory b = h.scalarMult(tj).pointAdd(tau.scalarMult(cj));
return uint256(sha256(previous_hash, a.X, a.Y, b.X, b.Y));
}
/**
* Verify whether or not a Ring Signature is valid
*
* Must call tagAdd(tag_x) after a valid signature, if an existing
* tag exists the signature is invalidated to prevent double-spend
*/
function isSignatureValid(Data storage self, uint256 tag_x, uint256 tag_y, uint256[] ctlist)
internal view returns (bool)
{
// Ring must be full before signatures can be accepted
require(isFull(self));
// If tag exists, the signature is no longer valid
// Remember, the tag must be saved to the ring afterwards
require(!tagExists(self, tag_x));
// h ← H(h, τ)
uint256 hashout = uint256(sha256(self.hash.X, tag_x, tag_y));
uint256 csum = 0;
for (uint i = 0; i < self.pubkeys.length; i++) {
// h ← H(h, a, b)
// sum({c...})
uint256 cj = ctlist[2*i] % Curve.genOrder();
uint256 tj = ctlist[2*i+1] % Curve.genOrder();
hashout = ringLink(hashout, cj, tj, Curve.Point(tag_x, tag_y), self.hash, self.pubkeys[i]);
csum = addmod(csum, cj, Curve.genOrder());
}
hashout %= Curve.genOrder();
return hashout == csum;
}
}