forked from tkkxgh/DVIMC-mindspore
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
130 lines (112 loc) · 6.02 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from datasets import build_dataset
import mindspore as ms
from mindspore import nn, grad, Tensor, ops, value_and_grad
from mindspore.experimental import optim
from dvimc_model import DVIMC_model
from dvimc_loss import DVIMC_loss
from run_epoch import train, test
import numpy as np
import random
import argparse
from sklearn.cluster import KMeans
def initialization(model, cmv_data, sv_loaders, args):
print('Initializing......')
model.set_train(True)
criterion = nn.MSELoss()
def initialization_forward(sv_data, view):
_, sv_rec = model.vs_encode(sv_data, view)
vs_rec_loss = criterion(sv_rec, sv_data)
return vs_rec_loss
for v in range(args.num_views):
networks_parameters = list(filter(lambda p: f'view_{v}' in p.name and 'var' not in p.name, model.trainable_params()))
optimizer = optim.Adam(networks_parameters)
for e in range(1, args.initialization_epochs + 1):
for (xv,) in sv_loaders[v]:
grad_fn = value_and_grad(initialization_forward, None, optimizer.parameters, has_aux=False)
rec_loss, params_gradient = grad_fn(xv, v)
optimizer(params_gradient)
model.set_train(False)
fit_data = [Tensor(csv_data, dtype=ms.float32) for csv_data in cmv_data]
latent_representations = []
for v in range(args.num_views):
latent, _ = model.vs_encode(fit_data[v], v)
latent_representations.append(latent)
fused_latent_representations = sum(latent_representations) / len(latent_representations)
kmeans = KMeans(n_clusters=args.class_num, n_init=10)
kmeans.fit(fused_latent_representations.asnumpy())
model.prior_mu.set_data(Tensor(kmeans.cluster_centers_, dtype=ms.float32))
def main(args):
print(f"Dataset : {args.dataset_name:>10} Missing rate : {args.missing_rate}")
eval_record = {"ACC": [], "NMI": [], "PUR": [], "ARI": []}
random.seed(2)
np.random.seed(3)
ms.set_seed(4)
cmv_data, imv_loader, sv_loaders = build_dataset(args)
model = DVIMC_model(args)
networks_parameters = list(filter(lambda p: 'encoders' in p.name or 'decoders' in p.name, model.trainable_params()))
prior_parameters = list(filter(lambda p: 'prior' in p.name, model.trainable_params()))
group_params = [{'params': networks_parameters, 'lr': args.learning_rate},
{'params': prior_parameters, 'lr': args.prior_learning_rate}]
optimizer = optim.Adam(group_params)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_decay_step, gamma=args.lr_decay_gamma)
# milestone = list(range(args.lr_decay_step, args.train_epochs + 1, args.lr_decay_step))
# learning_rate = [args.learning_rate * pow(args.lr_decay_gamma, step) for step in range(len(milestone))]
# prior_learning_rate = [args.prior_learning_rate * pow(args.lr_decay_gamma, step) for step in range(len(milestone))]
# lr = nn.piecewise_constant_lr(milestone, learning_rate)
# prior_lr = nn.piecewise_constant_lr(milestone, prior_learning_rate)
# optimizer = nn.Adam([{'params': networks_parameters, 'lr': lr},
# {'params': prior_parameters, 'lr': prior_lr}])
initialization(model, cmv_data, sv_loaders, args)
dvimc_loss = DVIMC_loss(args)
print('training...')
for epoch in range(1, args.train_epochs + 1):
epoch_loss = train(model, dvimc_loss, optimizer, scheduler, imv_loader)
if epoch % args.log_interval == 0:
acc, nmi, ari, pur = test(model, imv_loader)
print(f'Epoch {epoch:>3}/{args.train_epochs} Loss : {epoch_loss:.2f} '
f'ACC : {acc * 100:.2f} NMI: {nmi * 100:.2f} ARI: {ari * 100:.2f} PUR: {pur * 100:.2f}')
final_results = test(model, imv_loader)
eval_record["ACC"].append(final_results[0])
eval_record["NMI"].append(final_results[1])
eval_record["ARI"].append(final_results[2])
eval_record["PUR"].append(final_results[3])
print(f'Average Results : ACC {np.mean(eval_record["ACC"]) * 100:.2f} NMI {np.mean(eval_record["NMI"]) * 100:.2f} '
f'ARI {np.mean(eval_record["ARI"]) * 100:.2f} PUR {np.mean(eval_record["PUR"]) * 100:.2f}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--train_epochs', type=int, default=300, help='training epochs')
parser.add_argument('--initialization_epochs', type=int, default=200, help='initialization epochs')
parser.add_argument('--batch_size', type=int, default=256, help='training batch size')
parser.add_argument('--learning_rate', type=float, default=0.0005, help='initial learning rate')
parser.add_argument('--prior_learning_rate', type=float, default=0.05, help='initial mixture-of-gaussian learning rate')
parser.add_argument('--z_dim', type=int, default=10, help='latent dimensions')
parser.add_argument('--lr_decay_step', type=float, default=10, help='StepLr_Step_size')
parser.add_argument('--lr_decay_gamma', type=float, default=0.9, help='StepLr_Gamma')
parser.add_argument('--dataset', type=int, default=0, help='0:Caltech7-5v, 1:Scene-15, 2:Multi-Fashion, 3:NoisyMNIST')
parser.add_argument('--log_interval', type=int, default=100)
parser.add_argument('--runs_num', type=int, default=10)
parser.add_argument('--missing_rate', type=float, default=0.1)
parser.add_argument('--alpha', type=float, default=5)
args = parser.parse_args()
ms.set_context(device_id=0, device_target="GPU")
args.dataset_dir_base = "./npz_data/"
if args.dataset == 0:
args.dataset_name = 'Caltech7-5V'
args.alpha = 5
args.likelihood = 'Gaussian'
elif args.dataset == 1:
args.dataset_name = 'Scene-15'
args.alpha = 20
args.likelihood = 'Gaussian'
elif args.dataset == 2:
args.dataset_name = 'Multi-Fashion'
args.alpha = 10
args.likelihood = 'Bernoulli'
else:
args.dataset_name = 'NoisyMNIST'
args.alpha = 10
args.likelihood = 'Bernoulli'
args.batch_size = 512
for missing_rate in [0.1, 0.3, 0.5, 0.7]:
args.missing_rate = missing_rate
main(args)