-
Notifications
You must be signed in to change notification settings - Fork 699
/
types.go
1231 lines (1021 loc) · 27.7 KB
/
types.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package btf
import (
"fmt"
"io"
"math"
"reflect"
"strings"
"github.com/cilium/ebpf/asm"
"github.com/cilium/ebpf/internal"
)
const maxTypeDepth = 32
// TypeID identifies a type in a BTF section.
type TypeID uint32
// Type represents a type described by BTF.
//
// Identity of Type follows the [Go specification]: two Types are considered
// equal if they have the same concrete type and the same dynamic value, aka
// they point at the same location in memory. This means that the following
// Types are considered distinct even though they have the same "shape".
//
// a := &Int{Size: 1}
// b := &Int{Size: 1}
// a != b
//
// [Go specification]: https://go.dev/ref/spec#Comparison_operators
type Type interface {
// Type can be formatted using the %s and %v verbs. %s outputs only the
// identity of the type, without any detail. %v outputs additional detail.
//
// Use the '+' flag to include the address of the type.
//
// Use the width to specify how many levels of detail to output, for example
// %1v will output detail for the root type and a short description of its
// children. %2v would output details of the root type and its children
// as well as a short description of the grandchildren.
fmt.Formatter
// Name of the type, empty for anonymous types and types that cannot
// carry a name, like Void and Pointer.
TypeName() string
// Make a copy of the type, without copying Type members.
copy() Type
// New implementations must update walkType.
}
var (
_ Type = (*Int)(nil)
_ Type = (*Struct)(nil)
_ Type = (*Union)(nil)
_ Type = (*Enum)(nil)
_ Type = (*Fwd)(nil)
_ Type = (*Func)(nil)
_ Type = (*Typedef)(nil)
_ Type = (*Var)(nil)
_ Type = (*Datasec)(nil)
_ Type = (*Float)(nil)
_ Type = (*declTag)(nil)
_ Type = (*typeTag)(nil)
_ Type = (*cycle)(nil)
)
// types is a list of Type.
//
// The order determines the ID of a type.
type types []Type
func (ts types) ByID(id TypeID) (Type, error) {
if int(id) > len(ts) {
return nil, fmt.Errorf("type ID %d: %w", id, ErrNotFound)
}
return ts[id], nil
}
// Void is the unit type of BTF.
type Void struct{}
func (v *Void) Format(fs fmt.State, verb rune) { formatType(fs, verb, v) }
func (v *Void) TypeName() string { return "" }
func (v *Void) size() uint32 { return 0 }
func (v *Void) copy() Type { return (*Void)(nil) }
type IntEncoding byte
// Valid IntEncodings.
//
// These may look like they are flags, but they aren't.
const (
Unsigned IntEncoding = 0
Signed IntEncoding = 1
Char IntEncoding = 2
Bool IntEncoding = 4
)
func (ie IntEncoding) String() string {
switch ie {
case Char:
// NB: There is no way to determine signedness for char.
return "char"
case Bool:
return "bool"
case Signed:
return "signed"
case Unsigned:
return "unsigned"
default:
return fmt.Sprintf("IntEncoding(%d)", byte(ie))
}
}
// Int is an integer of a given length.
//
// See https://www.kernel.org/doc/html/latest/bpf/btf.html#btf-kind-int
type Int struct {
Name string
// The size of the integer in bytes.
Size uint32
Encoding IntEncoding
}
func (i *Int) Format(fs fmt.State, verb rune) {
formatType(fs, verb, i, i.Encoding, "size=", i.Size*8)
}
func (i *Int) TypeName() string { return i.Name }
func (i *Int) size() uint32 { return i.Size }
func (i *Int) copy() Type {
cpy := *i
return &cpy
}
// Pointer is a pointer to another type.
type Pointer struct {
Target Type
}
func (p *Pointer) Format(fs fmt.State, verb rune) {
formatType(fs, verb, p, "target=", p.Target)
}
func (p *Pointer) TypeName() string { return "" }
func (p *Pointer) size() uint32 { return 8 }
func (p *Pointer) copy() Type {
cpy := *p
return &cpy
}
// Array is an array with a fixed number of elements.
type Array struct {
Index Type
Type Type
Nelems uint32
}
func (arr *Array) Format(fs fmt.State, verb rune) {
formatType(fs, verb, arr, "index=", arr.Index, "type=", arr.Type, "n=", arr.Nelems)
}
func (arr *Array) TypeName() string { return "" }
func (arr *Array) copy() Type {
cpy := *arr
return &cpy
}
// Struct is a compound type of consecutive members.
type Struct struct {
Name string
// The size of the struct including padding, in bytes
Size uint32
Members []Member
}
func (s *Struct) Format(fs fmt.State, verb rune) {
formatType(fs, verb, s, "fields=", len(s.Members))
}
func (s *Struct) TypeName() string { return s.Name }
func (s *Struct) size() uint32 { return s.Size }
func (s *Struct) copy() Type {
cpy := *s
cpy.Members = copyMembers(s.Members)
return &cpy
}
func (s *Struct) members() []Member {
return s.Members
}
// Union is a compound type where members occupy the same memory.
type Union struct {
Name string
// The size of the union including padding, in bytes.
Size uint32
Members []Member
}
func (u *Union) Format(fs fmt.State, verb rune) {
formatType(fs, verb, u, "fields=", len(u.Members))
}
func (u *Union) TypeName() string { return u.Name }
func (u *Union) size() uint32 { return u.Size }
func (u *Union) copy() Type {
cpy := *u
cpy.Members = copyMembers(u.Members)
return &cpy
}
func (u *Union) members() []Member {
return u.Members
}
func copyMembers(orig []Member) []Member {
cpy := make([]Member, len(orig))
copy(cpy, orig)
return cpy
}
type composite interface {
members() []Member
}
var (
_ composite = (*Struct)(nil)
_ composite = (*Union)(nil)
)
// A value in bits.
type Bits uint32
// Bytes converts a bit value into bytes.
func (b Bits) Bytes() uint32 {
return uint32(b / 8)
}
// Member is part of a Struct or Union.
//
// It is not a valid Type.
type Member struct {
Name string
Type Type
Offset Bits
BitfieldSize Bits
}
// Enum lists possible values.
type Enum struct {
Name string
// Size of the enum value in bytes.
Size uint32
// True if the values should be interpreted as signed integers.
Signed bool
Values []EnumValue
}
func (e *Enum) Format(fs fmt.State, verb rune) {
formatType(fs, verb, e, "size=", e.Size, "values=", len(e.Values))
}
func (e *Enum) TypeName() string { return e.Name }
// EnumValue is part of an Enum
//
// Is is not a valid Type
type EnumValue struct {
Name string
Value uint64
}
func (e *Enum) size() uint32 { return e.Size }
func (e *Enum) copy() Type {
cpy := *e
cpy.Values = make([]EnumValue, len(e.Values))
copy(cpy.Values, e.Values)
return &cpy
}
// has64BitValues returns true if the Enum contains a value larger than 32 bits.
// Kernels before 6.0 have enum values that overrun u32 replaced with zeroes.
//
// 64-bit enums have their Enum.Size attributes correctly set to 8, but if we
// use the size attribute as a heuristic during BTF marshaling, we'll emit
// ENUM64s to kernels that don't support them.
func (e *Enum) has64BitValues() bool {
for _, v := range e.Values {
if v.Value > math.MaxUint32 {
return true
}
}
return false
}
// FwdKind is the type of forward declaration.
type FwdKind int
// Valid types of forward declaration.
const (
FwdStruct FwdKind = iota
FwdUnion
)
func (fk FwdKind) String() string {
switch fk {
case FwdStruct:
return "struct"
case FwdUnion:
return "union"
default:
return fmt.Sprintf("%T(%d)", fk, int(fk))
}
}
// Fwd is a forward declaration of a Type.
type Fwd struct {
Name string
Kind FwdKind
}
func (f *Fwd) Format(fs fmt.State, verb rune) {
formatType(fs, verb, f, f.Kind)
}
func (f *Fwd) TypeName() string { return f.Name }
func (f *Fwd) copy() Type {
cpy := *f
return &cpy
}
// Typedef is an alias of a Type.
type Typedef struct {
Name string
Type Type
}
func (td *Typedef) Format(fs fmt.State, verb rune) {
formatType(fs, verb, td, td.Type)
}
func (td *Typedef) TypeName() string { return td.Name }
func (td *Typedef) copy() Type {
cpy := *td
return &cpy
}
// Volatile is a qualifier.
type Volatile struct {
Type Type
}
func (v *Volatile) Format(fs fmt.State, verb rune) {
formatType(fs, verb, v, v.Type)
}
func (v *Volatile) TypeName() string { return "" }
func (v *Volatile) qualify() Type { return v.Type }
func (v *Volatile) copy() Type {
cpy := *v
return &cpy
}
// Const is a qualifier.
type Const struct {
Type Type
}
func (c *Const) Format(fs fmt.State, verb rune) {
formatType(fs, verb, c, c.Type)
}
func (c *Const) TypeName() string { return "" }
func (c *Const) qualify() Type { return c.Type }
func (c *Const) copy() Type {
cpy := *c
return &cpy
}
// Restrict is a qualifier.
type Restrict struct {
Type Type
}
func (r *Restrict) Format(fs fmt.State, verb rune) {
formatType(fs, verb, r, r.Type)
}
func (r *Restrict) TypeName() string { return "" }
func (r *Restrict) qualify() Type { return r.Type }
func (r *Restrict) copy() Type {
cpy := *r
return &cpy
}
// Func is a function definition.
type Func struct {
Name string
Type Type
Linkage FuncLinkage
}
func FuncMetadata(ins *asm.Instruction) *Func {
fn, _ := ins.Metadata.Get(funcInfoMeta{}).(*Func)
return fn
}
// WithFuncMetadata adds a btf.Func to the Metadata of asm.Instruction.
func WithFuncMetadata(ins asm.Instruction, fn *Func) asm.Instruction {
ins.Metadata.Set(funcInfoMeta{}, fn)
return ins
}
func (f *Func) Format(fs fmt.State, verb rune) {
formatType(fs, verb, f, f.Linkage, "proto=", f.Type)
}
func (f *Func) TypeName() string { return f.Name }
func (f *Func) copy() Type {
cpy := *f
return &cpy
}
// FuncProto is a function declaration.
type FuncProto struct {
Return Type
Params []FuncParam
}
func (fp *FuncProto) Format(fs fmt.State, verb rune) {
formatType(fs, verb, fp, "args=", len(fp.Params), "return=", fp.Return)
}
func (fp *FuncProto) TypeName() string { return "" }
func (fp *FuncProto) copy() Type {
cpy := *fp
cpy.Params = make([]FuncParam, len(fp.Params))
copy(cpy.Params, fp.Params)
return &cpy
}
type FuncParam struct {
Name string
Type Type
}
// Var is a global variable.
type Var struct {
Name string
Type Type
Linkage VarLinkage
}
func (v *Var) Format(fs fmt.State, verb rune) {
formatType(fs, verb, v, v.Linkage)
}
func (v *Var) TypeName() string { return v.Name }
func (v *Var) copy() Type {
cpy := *v
return &cpy
}
// Datasec is a global program section containing data.
type Datasec struct {
Name string
Size uint32
Vars []VarSecinfo
}
func (ds *Datasec) Format(fs fmt.State, verb rune) {
formatType(fs, verb, ds)
}
func (ds *Datasec) TypeName() string { return ds.Name }
func (ds *Datasec) size() uint32 { return ds.Size }
func (ds *Datasec) copy() Type {
cpy := *ds
cpy.Vars = make([]VarSecinfo, len(ds.Vars))
copy(cpy.Vars, ds.Vars)
return &cpy
}
// VarSecinfo describes variable in a Datasec.
//
// It is not a valid Type.
type VarSecinfo struct {
// Var or Func.
Type Type
Offset uint32
Size uint32
}
// Float is a float of a given length.
type Float struct {
Name string
// The size of the float in bytes.
Size uint32
}
func (f *Float) Format(fs fmt.State, verb rune) {
formatType(fs, verb, f, "size=", f.Size*8)
}
func (f *Float) TypeName() string { return f.Name }
func (f *Float) size() uint32 { return f.Size }
func (f *Float) copy() Type {
cpy := *f
return &cpy
}
// declTag associates metadata with a declaration.
type declTag struct {
Type Type
Value string
// The index this tag refers to in the target type. For composite types,
// a value of -1 indicates that the tag refers to the whole type. Otherwise
// it indicates which member or argument the tag applies to.
Index int
}
func (dt *declTag) Format(fs fmt.State, verb rune) {
formatType(fs, verb, dt, "type=", dt.Type, "value=", dt.Value, "index=", dt.Index)
}
func (dt *declTag) TypeName() string { return "" }
func (dt *declTag) copy() Type {
cpy := *dt
return &cpy
}
// typeTag associates metadata with a type.
type typeTag struct {
Type Type
Value string
}
func (tt *typeTag) Format(fs fmt.State, verb rune) {
formatType(fs, verb, tt, "type=", tt.Type, "value=", tt.Value)
}
func (tt *typeTag) TypeName() string { return "" }
func (tt *typeTag) qualify() Type { return tt.Type }
func (tt *typeTag) copy() Type {
cpy := *tt
return &cpy
}
// cycle is a type which had to be elided since it exceeded maxTypeDepth.
type cycle struct {
root Type
}
func (c *cycle) ID() TypeID { return math.MaxUint32 }
func (c *cycle) Format(fs fmt.State, verb rune) { formatType(fs, verb, c, "root=", c.root) }
func (c *cycle) TypeName() string { return "" }
func (c *cycle) copy() Type {
cpy := *c
return &cpy
}
type sizer interface {
size() uint32
}
var (
_ sizer = (*Int)(nil)
_ sizer = (*Pointer)(nil)
_ sizer = (*Struct)(nil)
_ sizer = (*Union)(nil)
_ sizer = (*Enum)(nil)
_ sizer = (*Datasec)(nil)
)
type qualifier interface {
qualify() Type
}
var (
_ qualifier = (*Const)(nil)
_ qualifier = (*Restrict)(nil)
_ qualifier = (*Volatile)(nil)
_ qualifier = (*typeTag)(nil)
)
// Sizeof returns the size of a type in bytes.
//
// Returns an error if the size can't be computed.
func Sizeof(typ Type) (int, error) {
var (
n = int64(1)
elem int64
)
for i := 0; i < maxTypeDepth; i++ {
switch v := typ.(type) {
case *Array:
if n > 0 && int64(v.Nelems) > math.MaxInt64/n {
return 0, fmt.Errorf("type %s: overflow", typ)
}
// Arrays may be of zero length, which allows
// n to be zero as well.
n *= int64(v.Nelems)
typ = v.Type
continue
case sizer:
elem = int64(v.size())
case *Typedef:
typ = v.Type
continue
case qualifier:
typ = v.qualify()
continue
default:
return 0, fmt.Errorf("unsized type %T", typ)
}
if n > 0 && elem > math.MaxInt64/n {
return 0, fmt.Errorf("type %s: overflow", typ)
}
size := n * elem
if int64(int(size)) != size {
return 0, fmt.Errorf("type %s: overflow", typ)
}
return int(size), nil
}
return 0, fmt.Errorf("type %s: exceeded type depth", typ)
}
// alignof returns the alignment of a type.
//
// Returns an error if the Type can't be aligned, like an integer with an uneven
// size. Currently only supports the subset of types necessary for bitfield
// relocations.
func alignof(typ Type) (int, error) {
var n int
switch t := UnderlyingType(typ).(type) {
case *Enum:
n = int(t.size())
case *Int:
n = int(t.Size)
default:
return 0, fmt.Errorf("can't calculate alignment of %T", t)
}
if !pow(n) {
return 0, fmt.Errorf("alignment value %d is not a power of two", n)
}
return n, nil
}
// pow returns true if n is a power of two.
func pow(n int) bool {
return n != 0 && (n&(n-1)) == 0
}
// Transformer modifies a given Type and returns the result.
//
// For example, UnderlyingType removes any qualifiers or typedefs from a type.
// See the example on Copy for how to use a transform.
type Transformer func(Type) Type
// Copy a Type recursively.
//
// typ may form a cycle. If transform is not nil, it is called with the
// to be copied type, and the returned value is copied instead.
func Copy(typ Type, transform Transformer) Type {
copies := make(copier)
copies.copy(&typ, transform)
return typ
}
// copy a slice of Types recursively.
//
// See Copy for the semantics.
func copyTypes(types []Type, transform Transformer) []Type {
result := make([]Type, len(types))
copy(result, types)
copies := make(copier)
for i := range result {
copies.copy(&result[i], transform)
}
return result
}
type copier map[Type]Type
func (c copier) copy(typ *Type, transform Transformer) {
var work typeDeque
for t := typ; t != nil; t = work.Pop() {
// *t is the identity of the type.
if cpy := c[*t]; cpy != nil {
*t = cpy
continue
}
var cpy Type
if transform != nil {
cpy = transform(*t).copy()
} else {
cpy = (*t).copy()
}
c[*t] = cpy
*t = cpy
// Mark any nested types for copying.
walkType(cpy, work.Push)
}
}
type typeDeque = internal.Deque[*Type]
// inflateRawTypes takes a list of raw btf types linked via type IDs, and turns
// it into a graph of Types connected via pointers.
//
// If baseTypes are provided, then the raw types are
// considered to be of a split BTF (e.g., a kernel module).
//
// Returns a slice of types indexed by TypeID. Since BTF ignores compilation
// units, multiple types may share the same name. A Type may form a cyclic graph
// by pointing at itself.
func inflateRawTypes(rawTypes []rawType, baseTypes types, rawStrings *stringTable) ([]Type, error) {
types := make([]Type, 0, len(rawTypes)+1) // +1 for Void added to base types
typeIDOffset := TypeID(1) // Void is TypeID(0), so the rest starts from TypeID(1)
if baseTypes == nil {
// Void is defined to always be type ID 0, and is thus omitted from BTF.
types = append(types, (*Void)(nil))
} else {
// For split BTF, the next ID is max base BTF type ID + 1
typeIDOffset = TypeID(len(baseTypes))
}
type fixupDef struct {
id TypeID
typ *Type
}
var fixups []fixupDef
fixup := func(id TypeID, typ *Type) bool {
if id < TypeID(len(baseTypes)) {
*typ = baseTypes[id]
return true
}
idx := id
if baseTypes != nil {
idx = id - TypeID(len(baseTypes))
}
if idx < TypeID(len(types)) {
// We've already inflated this type, fix it up immediately.
*typ = types[idx]
return true
}
fixups = append(fixups, fixupDef{id, typ})
return false
}
type assertion struct {
id TypeID
typ *Type
want reflect.Type
}
var assertions []assertion
fixupAndAssert := func(id TypeID, typ *Type, want reflect.Type) error {
if !fixup(id, typ) {
assertions = append(assertions, assertion{id, typ, want})
return nil
}
// The type has already been fixed up, check the type immediately.
if reflect.TypeOf(*typ) != want {
return fmt.Errorf("type ID %d: expected %s, got %T", id, want, *typ)
}
return nil
}
type bitfieldFixupDef struct {
id TypeID
m *Member
}
var (
legacyBitfields = make(map[TypeID][2]Bits) // offset, size
bitfieldFixups []bitfieldFixupDef
)
convertMembers := func(raw []btfMember, kindFlag bool) ([]Member, error) {
// NB: The fixup below relies on pre-allocating this array to
// work, since otherwise append might re-allocate members.
members := make([]Member, 0, len(raw))
for i, btfMember := range raw {
name, err := rawStrings.Lookup(btfMember.NameOff)
if err != nil {
return nil, fmt.Errorf("can't get name for member %d: %w", i, err)
}
members = append(members, Member{
Name: name,
Offset: Bits(btfMember.Offset),
})
m := &members[i]
fixup(raw[i].Type, &m.Type)
if kindFlag {
m.BitfieldSize = Bits(btfMember.Offset >> 24)
m.Offset &= 0xffffff
// We ignore legacy bitfield definitions if the current composite
// is a new-style bitfield. This is kind of safe since offset and
// size on the type of the member must be zero if kindFlat is set
// according to spec.
continue
}
// This may be a legacy bitfield, try to fix it up.
data, ok := legacyBitfields[raw[i].Type]
if ok {
// Bingo!
m.Offset += data[0]
m.BitfieldSize = data[1]
continue
}
if m.Type != nil {
// We couldn't find a legacy bitfield, but we know that the member's
// type has already been inflated. Hence we know that it can't be
// a legacy bitfield and there is nothing left to do.
continue
}
// We don't have fixup data, and the type we're pointing
// at hasn't been inflated yet. No choice but to defer
// the fixup.
bitfieldFixups = append(bitfieldFixups, bitfieldFixupDef{
raw[i].Type,
m,
})
}
return members, nil
}
var declTags []*declTag
for i, raw := range rawTypes {
var (
id = typeIDOffset + TypeID(i)
typ Type
)
name, err := rawStrings.Lookup(raw.NameOff)
if err != nil {
return nil, fmt.Errorf("get name for type id %d: %w", id, err)
}
switch raw.Kind() {
case kindInt:
size := raw.Size()
bi := raw.data.(*btfInt)
if bi.Offset() > 0 || bi.Bits().Bytes() != size {
legacyBitfields[id] = [2]Bits{bi.Offset(), bi.Bits()}
}
typ = &Int{name, raw.Size(), bi.Encoding()}
case kindPointer:
ptr := &Pointer{nil}
fixup(raw.Type(), &ptr.Target)
typ = ptr
case kindArray:
btfArr := raw.data.(*btfArray)
arr := &Array{nil, nil, btfArr.Nelems}
fixup(btfArr.IndexType, &arr.Index)
fixup(btfArr.Type, &arr.Type)
typ = arr
case kindStruct:
members, err := convertMembers(raw.data.([]btfMember), raw.Bitfield())
if err != nil {
return nil, fmt.Errorf("struct %s (id %d): %w", name, id, err)
}
typ = &Struct{name, raw.Size(), members}
case kindUnion:
members, err := convertMembers(raw.data.([]btfMember), raw.Bitfield())
if err != nil {
return nil, fmt.Errorf("union %s (id %d): %w", name, id, err)
}
typ = &Union{name, raw.Size(), members}
case kindEnum:
rawvals := raw.data.([]btfEnum)
vals := make([]EnumValue, 0, len(rawvals))
signed := raw.Signed()
for i, btfVal := range rawvals {
name, err := rawStrings.Lookup(btfVal.NameOff)
if err != nil {
return nil, fmt.Errorf("get name for enum value %d: %s", i, err)
}
value := uint64(btfVal.Val)
if signed {
// Sign extend values to 64 bit.
value = uint64(int32(btfVal.Val))
}
vals = append(vals, EnumValue{name, value})
}
typ = &Enum{name, raw.Size(), signed, vals}
case kindForward:
typ = &Fwd{name, raw.FwdKind()}
case kindTypedef:
typedef := &Typedef{name, nil}
fixup(raw.Type(), &typedef.Type)
typ = typedef
case kindVolatile:
volatile := &Volatile{nil}
fixup(raw.Type(), &volatile.Type)
typ = volatile
case kindConst:
cnst := &Const{nil}
fixup(raw.Type(), &cnst.Type)
typ = cnst
case kindRestrict:
restrict := &Restrict{nil}
fixup(raw.Type(), &restrict.Type)
typ = restrict
case kindFunc:
fn := &Func{name, nil, raw.Linkage()}
if err := fixupAndAssert(raw.Type(), &fn.Type, reflect.TypeOf((*FuncProto)(nil))); err != nil {
return nil, err
}
typ = fn
case kindFuncProto:
rawparams := raw.data.([]btfParam)
params := make([]FuncParam, 0, len(rawparams))
for i, param := range rawparams {
name, err := rawStrings.Lookup(param.NameOff)
if err != nil {
return nil, fmt.Errorf("get name for func proto parameter %d: %s", i, err)
}
params = append(params, FuncParam{
Name: name,
})
}
for i := range params {
fixup(rawparams[i].Type, ¶ms[i].Type)
}
fp := &FuncProto{nil, params}
fixup(raw.Type(), &fp.Return)
typ = fp
case kindVar:
variable := raw.data.(*btfVariable)
v := &Var{name, nil, VarLinkage(variable.Linkage)}
fixup(raw.Type(), &v.Type)
typ = v
case kindDatasec:
btfVars := raw.data.([]btfVarSecinfo)
vars := make([]VarSecinfo, 0, len(btfVars))