forked from terbed/Deep-rPPG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
302 lines (259 loc) · 11.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
from comet_ml import Experiment
from src.archs import *
from src.errfuncs import *
from src.dset import *
import os
import argparse
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
import torch.optim as optim
tr = torch
def train_model(models, dataloaders, criterion, optimizers, opath, num_epochs=35):
val_loss_history = []
train_loss_history = []
for epoch in tqdm(range(num_epochs)):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
experiment.set_epoch(epoch)
# Each epoch has a training and validation phase
phases = ['train', 'val']
for phase in phases:
running_loss = 0.0
if phase == 'train':
for i in range(len(models)):
models[i].train() # Set model to training mode -> activate droput layers and batch norm
else:
for i in range(len(models)):
models[i].eval() # Set model to evaluate mode
# Iterate over data.
for inputs, targets in dataloaders[phase]:
for count, item in enumerate(inputs):
inputs[count] = item.to(device)
targets = targets.to(device)
# zero the parameter gradients
for optimizer in optimizers:
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
if len(models) == 1:
outputs = models[0](*inputs).squeeze()
loss = criterion(outputs, targets)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizers[0].step()
elif len(models) == 2:
# Signal extraction
signals = models[0](*inputs).view(-1, 1, 128)
# Rate estimation
rates = models[1](signals).view(-1, 1, 2)
loss = criterion(rates, targets.view(-1, 1))
if phase == 'train':
loss.backward()
optimizers[0].step()
optimizers[1].step()
# statistics
running_loss += loss.item()
epoch_loss = running_loss / len(dataloaders[phase])
print('{} Loss: {:.4f} '.format(phase, epoch_loss))
if phase == 'val':
val_loss_history.append(epoch_loss)
with experiment.test():
experiment.log_metric("loss", epoch_loss, step=epoch)
else:
train_loss_history.append(epoch_loss)
with experiment.train():
experiment.log_metric("loss", epoch_loss, step=epoch)
experiment.log_epoch_end(epoch)
for i, model in enumerate(models):
torch.save(model.state_dict(), f'checkpoints/{opath}/model{i}_ep{epoch}.pt')
print()
if __name__ == '__main__':
# train on the GPU or on the CPU, if a GPU is not available
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
print(device)
parser = argparse.ArgumentParser()
parser.add_argument('model', type=str, nargs='+', help='DeepPhys, PhysNet, RateProbEst')
parser.add_argument('--loss', type=str, help='L1, MSE, NegPea, SNR, Gauss, Laplace')
parser.add_argument('--data', type=str, help='path to .hdf5 file containing data')
parser.add_argument('--intervals', type=int, nargs='+', help='indices: train_start, train_end, val_start, val_end, shift_idx')
parser.add_argument('--logger_name', type=str, help='project name for commet ml experiment')
parser.add_argument('--epochs', type=int, default=60, help='number of epochs')
parser.add_argument('--batch_size', type=int, default=8, help='batch size')
parser.add_argument("--pretrained_weights", type=str, help="if specified starts from checkpoint model")
parser.add_argument("--checkpoint_dir", type=str, help="checkpoints will be saved in this directory")
parser.add_argument('--n_cpu', type=int, default=8, help='number of cpu threads to use during generation')
parser.add_argument('--img_size', type=int, default=128, help='size of image')
parser.add_argument('--time_depth', type=int, default=128, help='time depth for PhysNet')
parser.add_argument('--lr', type=float, nargs='+', default=1e-4, help='learning rate')
parser.add_argument('--crop', type=bool, default=False, help='crop baby with yolo (preprocessing step)')
parser.add_argument('--img_augm', type=bool, default=False, help='image augmentation (flip, color jitter)')
parser.add_argument('--freq_augm', type=bool, default=False, help='apply frequency augmentation')
args = parser.parse_args()
# create output dir
if args.checkpoint_dir:
try:
os.makedirs(f'checkpoints/{args.checkpoint_dir}')
print("Output directory is created")
except FileExistsError:
reply = input('Override existing weights? [y/n]')
if reply == 'n':
print('Add another outout path then!')
exit(0)
# Add the following code anywhere in your machine learning file
experiment = Experiment(api_key="", project_name=args.logger_name, workspace="")
hyper_params = {
"model": args.model,
"pretrained_weights": args.pretrained_weights,
"checkpoint_dir": args.checkpoint_dir,
"loss_fn": args.loss,
"time_depth": args.time_depth,
"img_size": args.img_size,
"batch_size": args.batch_size,
"n_workers": args.n_cpu,
"num_epochs": args.epochs,
"learning_rate": args.lr,
"database": args.data,
"intervals": args.intervals,
"crop": args.crop,
"img_augm": args.img_augm,
"freq_augm": args.freq_augm
}
experiment.log_parameters(hyper_params)
# Fix random seed for reproducability
np.random.seed(42)
torch.backends.cudnn.deterministic = True
torch.manual_seed(42)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(42)
# --------------------------------------
# Dataset and dataloader construction
# --------------------------------------
loader_device = None # if multiple workers yolo works only on cpu
if args.n_cpu == 0:
loader_device = torch.device('cuda')
else:
loader_device = torch.device('cpu')
testset = trainset = None
if args.model[0] == 'PhysNet':
print('Constructing data loader for PhysNet architecture...')
# chose label type for specific loss function
if args.loss == 'SNR' or args.loss == 'Laplace' or args.loss == 'Gauss':
ref_type = 'PulseNumerical'
print('\nPulseNumerical reference type chosen!')
else:
ref_type = 'PPGSignal'
print('\nPPGSignal reference type chosen!')
trainset = Dataset4DFromHDF5(args.data,
labels=(ref_type,),
device=loader_device,
start=args.intervals[0], end=args.intervals[1],
crop=args.crop,
augment=args.img_augm,
augment_freq=args.freq_augm)
testset = Dataset4DFromHDF5(args.data,
labels=(ref_type,),
device=loader_device,
start=args.intervals[2], end=args.intervals[3],
crop=args.crop,
augment=False,
augment_freq=False)
elif args.model[0] == 'DeepPhys':
phase_shift = args.intervals[4] if len(args.intervals) == 5 else 0 # init phase shift parameter
trainset = DatasetDeepPhysHDF5(args.data,
device=loader_device,
start=args.intervals[0], end=args.intervals[1],
shift=phase_shift,
crop=args.crop,
augment=args.img_augm)
testset = DatasetDeepPhysHDF5(args.data,
device=loader_device,
start=args.intervals[2], end=args.intervals[3],
shift=phase_shift,
crop=args.crop,
augment=False)
else:
print('Error! No such model.')
exit(666)
# Construct DataLoaders
trainloader = DataLoader(trainset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.n_cpu,
pin_memory=True)
testloader = DataLoader(testset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.n_cpu,
pin_memory=True)
dataloaders = {'train': trainloader, 'val': testloader}
print('\nDataLoaders succesfully constructed!')
# --------------------------
# Load model
# --------------------------
models = []
if len(args.model) == 1:
if args.model[0] == 'DeepPhys':
models.append(DeepPhys())
elif args.model[0] == 'PhysNet':
models.append(PhysNetED())
else:
print('\nError! No such model. Choose from: DeepPhys, PhysNet')
exit(666)
elif len(args.model) == 2:
# signal extractor model
models.append(PhysNetED())
# rate estimator model
if args.model[1] == 'RateProbEst':
models.append(RateProbEst())
elif args.model[1] == 'RateEst':
models.append(RateEst())
else:
print('\nNo such estimator model! Choose from: RateProbEst, RateEst')
exit(666)
# Use multiple GPU if there are!
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
for i in range(len(models)):
models[i] = tr.nn.DataParallel(models[i])
# If there are pretrained weights, initialize model
if args.pretrained_weights:
models[0].load_state_dict(tr.load(args.pretrained_weights))
print('\nPre-trained weights are loaded for PhysNet!')
# Copy model to working device
for i in range(len(models)):
models[i] = models[i].to(device)
# --------------------------
# Define loss function
# ---------------------------
# 'L1, MSE, NegPea, SNR, Gauss, Laplace'
loss_fn = None
if args.loss == 'L1':
loss_fn = nn.L1Loss()
elif args.loss == 'MSE':
loss_fn = nn.MSELoss()
elif args.loss == 'NegPea':
loss_fn = NegPeaLoss()
elif args.loss == 'SNR':
loss_fn = SNRLoss()
elif args.loss == 'Gauss':
loss_fn = GaussLoss()
elif args.loss == 'Laplace':
loss_fn = LaplaceLoss()
else:
print('\nError! No such loss function. Choose from: L1, MSE, NegPea, SNR, Gauss, Laplace')
exit(666)
# ----------------------------
# Initialize optimizer
# ----------------------------
opts = []
for i, model in enumerate(models):
opts.append(optim.AdamW(models[i].parameters(), lr=args.lr[i]))
# -----------------------------
# Start training
# -----------------------------
train_model(models, dataloaders, criterion=loss_fn, optimizers=opts, opath=args.checkpoint_dir, num_epochs=args.epochs)
experiment.end()
print('\nTraining is finished without flaw!')