Skip to content

chunniunai220ml/2016_GAN_Matlab

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generative Adversarial Nets for Matlab

only class 2 with GAN

class 0-9 with infoGAN

I use feature matching to train Generative model. (I define this Loss in the /matlab/+dagnn/Feature_Match_Loss.m)

1.Compile matconvnet by run gpu_compile.m which you should remove comment in it.

2.You can test this code by run test_gan_3.m or test_gan_info.m

3.If you wanna train this code, you can run train_gan_3.m or train_gan_info.m You can find the network structure in GDnet_3.m and GDnet_info.m

Some Details

1.I may miss some thing or not select a good initial parameter. So any advice is welcome.

GDnet_1 is using 32*32 random map as input

GDnet_2 is using 100 random vector and using deconv

GDnet_3 is using 100 random vector and using conv (like fc layer)

In my experiment, deconv show that the output adjacent pixel is likely. So in the minist using conv(fc layer) is better. (deconv may suit for real images such as CIFAR)

About

Generative Adversarial Nets for Matlab

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • HTML 68.7%
  • C 13.5%
  • MATLAB 8.3%
  • Cuda 2.7%
  • C++ 1.8%
  • Protocol Buffer 1.5%
  • Other 3.5%