-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
234 lines (181 loc) · 9.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import shutil
import torch
import random
import copy
import argparse
import logging
import time
import datetime
import numpy as np
from collections import defaultdict
import warnings
warnings.filterwarnings(action='ignore')
from tensorboardX import SummaryWriter
from models.loss import Criterion
from pathlib import Path
from engine import train_one_epoch_null_nohead, server_evaluate
from util.misc import get_rank
from data import build_different_dataloader, build_server_dataloader
from config import build_config
# from models.model_config import get_cfg
from util.adam_svd import AdamSVD
from models.vit_models import Swin
def average_model(server_model, client_models, sampled_client_indices, coefficients):
"""Average the updated and transmitted parameters from each selected client."""
averaged_weights = {}
for k, v in client_models[0].state_dict().items():
if 'prompter' in k or 'running' in k:
averaged_weights[k] = torch.zeros_like(v.data)
for it, idx in enumerate(sampled_client_indices):
for k, v in client_models[idx].state_dict().items():
if k in averaged_weights.keys():
averaged_weights[k] += coefficients[it] * v.data
for k, v in server_model.state_dict().items():
if k in averaged_weights.keys():
v.data.copy_(averaged_weights[k].data.clone())
for client_idx in np.arange(len(client_models)):
for key, param in averaged_weights.items():
if 'prompter' in key:
client_models[client_idx].state_dict()[key].data.copy_(param)
return server_model, client_models
def create_all_model(cfg):
device = torch.device(cfg.SOLVER.DEVICE)
server_model = Swin(cfg).to(device)
checkpoint = torch.load(cfg.PRETRAINED_FASTMRI_CKPT, map_location='cpu')
state_dict = checkpoint['server_model']
server_model.load_state_dict(state_dict, strict=False)
for k, v in server_model.head.named_parameters():
v.requires_grad = False
models = [copy.deepcopy(server_model) for idx in range(cfg.FL.CLIENTS_NUM)]
return server_model, models
def make_logger(dirname):
logger = logging.getLogger('FedMRI_log')
logger.propagate = False
logger.setLevel(logging.INFO)
fmt = logging.Formatter(fmt='%(asctime)s %(filename)s [lineno: %(lineno)d] %(message)s')
filename = '{}/log.txt'.format(dirname)
fh = logging.FileHandler(filename=filename)
fh.setLevel(logging.INFO)
fh.setFormatter(fmt=fmt)
sh = logging.StreamHandler()
sh.setFormatter(fmt=fmt)
logger.addHandler(hdlr=fh)
logger.addHandler(hdlr=sh)
return logger
def main(cfg):
outputdir = os.path.join(cfg.OUTPUTDIR, cfg.FL.MODEL_NAME, cfg.DISTRIBUTION_TYPE)
experiments_num = max([int(k.split('_')[0]) + 1 for k in os.listdir(outputdir)]) if os.path.exists(outputdir) and not len(os.listdir(outputdir)) == 0 else 0
outputdir = os.path.join(outputdir, f'{experiments_num:02d}_' + time.strftime('%y-%m-%d_%H-%M') + f'local{cfg.TRAIN.LOCAL_EPOCHS}')
if outputdir:
os.makedirs(outputdir, exist_ok=True)
ckpt_root = Path(outputdir) / 'ckpt'
ckpt_root.mkdir(parents=True, exist_ok=True)
writer = SummaryWriter(os.path.join(outputdir, 'tensorboard'))
logger = make_logger(outputdir)
logger.info(logger.handlers[0].baseFilename)
logger.info('New job assigned {}'.format(datetime.datetime.now().strftime('%Y-%m-%d-%H:%M')))
logger.info('\nconfig:\n{}\n'.format(cfg))
logger.info('=======' * 5 + '\n')
server_model, models = create_all_model(cfg)
criterion = Criterion()
start_epoch = 0
seed = cfg.SEED + get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
device = torch.device(cfg.SOLVER.DEVICE)
n_parameters = sum(p.numel() for p in server_model.parameters() if p.requires_grad)
logger.info('TOTAL Trainable Params: {:.2f} M'.format(n_parameters / 1000 / 1000))
dataloader_train, lens_train = build_different_dataloader(cfg, mode='train')
if cfg.DISTRIBUTION_TYPE == 'in-distribution':
dataloader_val, lens_val = build_different_dataloader(cfg, mode='val')
elif cfg.DISTRIBUTION_TYPE == 'out-of-distribution':
dataloader_val, lens_val = build_server_dataloader(cfg, mode='val')
else:
raise ValueError("cfg.DISTRIBUTION_TYPE should be in ['in-distribution', 'out-of-distribution']")
logger.info(f'train dataset:{lens_train}')
logger.info(f'val dataset:{lens_val}')
# build optimizer
trainable_prompt = []
for idx in range(len(models)):
m_param = [v for k, v in models[idx].enc.prompter.named_parameters() if v.requires_grad]
trainable_prompt.append(m_param)
optimizers = [AdamSVD(trainable_prompt[idx], lr=cfg.SOLVER.LR[idx], weight_decay=cfg.SOLVER.WEIGHT_DECAY, ratio=cfg.SOLVER.RATIO) for idx in range(cfg.FL.CLIENTS_NUM)]
# milestone = [30, ]
# lr_schedulers = [torch.optim.lr_scheduler.MultiStepLR(optimizers[idx], milestones=milestone, gamma=cfg.SOLVER.LR_GAMMA) for idx in range(cfg.FL.CLIENTS_NUM)]
cfg.RESUME = ''
if cfg.RESUME != '':
checkpoint = torch.load(cfg.RESUME, device)
server_model.load_state_dict(checkpoint['server_model'], strict=True)
for idx, client_name in enumerate(cfg.DATASET.CLIENTS):
models[idx].load_state_dict(checkpoint['server_model'])
start_time = time.time()
server_best_status = {'NMSE': 10000000, 'PSNR': 0, 'SSIM': 0, 'bestround': 0}
for com_round in range(start_epoch, cfg.TRAIN.EPOCHS):
logger.info('---------------- com_round {:<3d}/{:<3d}----------------'.format(com_round, cfg.TRAIN.EPOCHS))
sampled_client_indices = np.random.choice(a=range(cfg.FL.CLIENTS_NUM), size=cfg.meta_client_num, replace=False).tolist()
logger.info(f"sampled clients: {sampled_client_indices}")
for idx, client_idx in enumerate(sampled_client_indices):
for _ in range(cfg.TRAIN.LOCAL_EPOCHS):
train_one_epoch_null_nohead(model=models[client_idx], criterion=criterion, data_loader=dataloader_train[client_idx],
optimizer=optimizers[client_idx], device=device)
# #lr_schedulers[client_idx].step()
logger.info(f"[Round: {str(com_round).zfill(4)}] Aggregate updated weights ...!")
# calculate averaging coefficient of weights
selected_total_size = sum([lens_train[idx] for idx in sampled_client_indices])
mixing_coefficients = [lens_train[idx] / selected_total_size for idx in sampled_client_indices]
# Aggregation
server_model, models = average_model(server_model, models, sampled_client_indices, mixing_coefficients)
fea_in = defaultdict(dict)
for idx, (k, p) in enumerate(server_model.enc.prompter.named_parameters()):
fea_in[idx] = torch.bmm(p.transpose(1, 2), p)
for idx in sampled_client_indices:
optimizers[idx].get_eigens(fea_in=fea_in)
optimizers[idx].get_transforms()
# server evaluate
eval_status = server_evaluate(server_model, criterion, dataloader_val, device)
logger.info(f'**** Current_round: {com_round:03d} server PSNR: {eval_status["PSNR"]:.3f} SSIM: {eval_status["SSIM"]:.3f} '
f'NMSE: {eval_status["NMSE"]:.3f} val_loss: {eval_status["loss"]:.3f}')
writer.add_scalar(tag='server psnr', scalar_value=eval_status["PSNR"], global_step=com_round)
writer.add_scalar(tag='server ssim', scalar_value=eval_status["SSIM"], global_step=com_round)
writer.add_scalar(tag='server loss', scalar_value=eval_status["loss"], global_step=com_round)
if eval_status['PSNR'] > server_best_status['PSNR']:
server_best_status.update(eval_status)
server_best_status.update({'bestround': com_round})
server_best_checkpoint = {
'server_model': server_model.state_dict(),
'bestround': com_round,
'args': cfg,
}
if not os.path.exists(ckpt_root):
ckpt_root = Path(outputdir) / 'ckpt'
ckpt_root.mkdir(parents=True, exist_ok=True)
checkpoint_path = os.path.join(ckpt_root, f'checkpoint-epoch_{(com_round):04}.pth')
torch.save(server_best_checkpoint, checkpoint_path)
logger.info(f'********* Best_round: {server_best_status["bestround"]} '
f'SERVER PSNR: {server_best_status["PSNR"]:.3f} '
f'SSIM: {server_best_status["SSIM"]:.3f} '
f'NMSE: {server_best_status["NMSE"]:.3f} ')
logger.info('*************' * 5 + '\n')
# log the best score!
logger.info("Best Results ----------")
logger.info('The best round for Server is {}'.format(server_best_status['bestround']))
logger.info("PSNR: {:.4f}".format(server_best_status['PSNR']))
logger.info("NMSE: {:.4f}".format(server_best_status['NMSE']))
logger.info("SSIM: {:.4f}".format(server_best_status['SSIM']))
logger.info("------------------")
checkpoint_final_path = os.path.join(ckpt_root, 'best.pth')
shutil.copy(checkpoint_path, checkpoint_final_path)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Training time {}'.format(total_time_str))
logger.info(logger.handlers[0].baseFilename)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="a unit Cross Multi modity transformer")
parser.add_argument(
"--config", default="different_dataset", help="choose a experiment to do")
args = parser.parse_args()
cfg = build_config(args.config)
main(cfg)
print('OK!')