-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain2.py
527 lines (450 loc) · 23.3 KB
/
train2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import os
os.environ['TRANSFORMERS_CACHE'] = '/srv/local/data/chufan2/huggingface/'
import argparse
import json
import numpy as np
import torch
import copy
import pickle
# from apex import amp
# import ujson as json
from torch.utils.data import DataLoader
from torch.optim import AdamW
from transformers import AutoConfig, AutoModel, AutoTokenizer
from transformers.optimization import get_linear_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup
from tqdm import tqdm
import random
from model2 import DocREModel
from prepro import read_docred, read_chemdisgene
from evaluation import official_evaluate, to_official
MEMORY_SIZE = 200
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0 and torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
def collate_fn(batch):
max_len = max([len(f["input_ids"]) for f in batch])
input_ids = [f["input_ids"] + [0] * (max_len - len(f["input_ids"])) for f in batch]
input_mask = [[1.0] * len(f["input_ids"]) + [0.0] * (max_len - len(f["input_ids"])) for f in batch]
labels = [f["labels"] for f in batch]
entity_pos = [f["entity_pos"] for f in batch]
hts = [f["hts"] for f in batch]
input_ids = torch.tensor(input_ids, dtype=torch.long)
input_mask = torch.tensor(input_mask, dtype=torch.float)
output = (input_ids, input_mask, labels, entity_pos, hts)
return output
def train(args, model, train_features, dev_features, save_best_val=True, lr=1e-4, save_after_epoch=10,
test_features=None):
new_layer = ["extractor", "bilinear"]
optimizer_grouped_parameters = [
{"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in new_layer)], },
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in new_layer)], "lr": lr},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
# model, optimizer = amp.initialize(model, optimizer, opt_level="O1", verbosity=0)
num_steps = 0
set_seed(args)
model.zero_grad()
# finetune(train_features, optimizer, args.num_train_epochs, num_steps)
# def finetune(features, optimizer, args.num_train_epochs, num_steps):
train_dataloader = DataLoader(train_features, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, drop_last=True)
train_iterator = range(int(args.num_train_epochs))
total_steps = int(len(train_dataloader) * args.num_train_epochs // args.gradient_accumulation_steps)
warmup_steps = int(total_steps * args.warmup_ratio)
if args.model_type == "ATLOP":
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps)
else:
# scheduler = get_cosine_with_hard_restarts_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps)
best_model = None
best_val_risk = np.inf
print("Total steps: {}".format(total_steps))
print("Warmup steps: {}".format(warmup_steps))
for epoch in tqdm(train_iterator):
model.zero_grad()
for step, batch in enumerate(tqdm(train_dataloader)):
model.train()
# # print(switch)
inputs = {'input_ids': batch[0].to(args.device),
'attention_mask': batch[1].to(args.device),
'labels': batch[2],
'entity_pos': batch[3],
'hts': batch[4],
# 'sampled_docs': sampled_docs,
}
outputs = model(**inputs)
loss = sum(outputs[0]) / args.gradient_accumulation_steps
loss.backward()
# with amp.scale_loss(loss, optimizer) as scaled_loss:
# scaled_loss.backward()
if step % args.gradient_accumulation_steps == 0:
if args.max_grad_norm > 0:
# torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step()
model.zero_grad()
num_steps += 1
if (step + 1) == len(train_dataloader) - 1 or (args.evaluation_steps > 0 and num_steps % args.evaluation_steps == 0 and step % args.gradient_accumulation_steps == 0):
print("training risk:", loss.item(), " step:", num_steps)
if "chemdisgene" in args.data_dir.lower():
avg_val_risk, test_output = cal_val_risk_bio(args, model, dev_features)
else:
avg_val_risk, test_output = cal_val_risk(args, model, dev_features)
print('avg val risk:', avg_val_risk, test_output, '\n')
if test_features is not None:
if "chemdisgene" in args.data_dir.lower():
test_score, test_output = evaluate_bio(args, model, test_features, tag="test")
else:
test_score, test_output = evaluate(args, model, test_features, tag="test")
print('test risk:', test_score, test_output, '\n')
if (epoch > save_after_epoch) and (best_model is None) or (avg_val_risk[0] < best_val_risk):
best_val_risk = avg_val_risk[0]
# copy the model state dict
best_model = {k: v.cpu() for k, v in model.state_dict().items()}
# load the best model
if save_best_val:
model.load_state_dict(best_model)
# torch.save(model.state_dict(), os.path.join(args.save_path, "state_dict.pth"))
return num_steps
def cal_val_risk(args, model, features, tag="dev"):
dataloader = DataLoader(features, batch_size=args.test_batch_size, shuffle=False, collate_fn=collate_fn, drop_last=False)
val_risk = []
nums = 0
preds = []
with torch.no_grad():
model.eval()
for batch in dataloader:
inputs = {'input_ids': batch[0].to(args.device),
'attention_mask': batch[1].to(args.device),
'labels': batch[2],
'entity_pos': batch[3],
'hts': batch[4]
}
output = model(**inputs)
logits = output[1]
# print(len(logits))
val_risk.append(np.array([risk.item() for risk in output[0]]))
nums += 1
logits = logits.cpu().numpy()
if args.isrank:
pred = np.zeros((logits.shape[0], logits.shape[1]))
for i in range(1, logits.shape[1]):
pred[(logits[:, i] > logits[:, 0]), i] = 1
pred[:, 0] = (pred.sum(1) == 0)
else:
pred = np.zeros((logits.shape[0], logits.shape[1] + 1))
for i in range(logits.shape[1]):
pred[(logits[:, i] > 0.), i + 1] = 1
pred[:, 0] = (pred.sum(1) == 0)
preds.append(pred)
preds = np.concatenate(preds, axis=0).astype(np.float32)
ans = to_official(preds, features)
if len(ans) > 0:
best_f1, _, best_f1_ign, re_f1_ignore_train, re_p, re_r = official_evaluate(ans, args.data_dir, tag, args)
output = {
tag + "_F1": best_f1 * 100,
tag + "_F1_ign": best_f1_ign * 100,
"re_p": re_p * 100,
"re_r": re_r * 100,
}
else:
best_f1, best_f1_ign = -1, -1
output = {
tag + "_F1": best_f1 * 100,
tag + "_F1_ign": best_f1_ign * 100,
}
# return np.stack(val_risk, axis=0).sum(axis=0) / nums, output
return [-best_f1 * 100], output
def evaluate(args, model, features, tag="test", eval_top_10=False):
dataloader = DataLoader(features, batch_size=args.test_batch_size, shuffle=False, collate_fn=collate_fn, drop_last=False)
preds = []
sims_list = []
labels = []
for batch in dataloader:
model.eval()
inputs = {'input_ids': batch[0].to(args.device),
'attention_mask': batch[1].to(args.device),
'labels': batch[2],
'entity_pos': batch[3],
'hts': batch[4],
}
with torch.no_grad():
output = model(**inputs)
logits = output[1].cpu().numpy()
sims = [model.sims[0].cpu().numpy(), model.sims[1].cpu().numpy()]
if args.isrank:
pred = np.zeros((logits.shape[0], logits.shape[1]))
for i in range(1, logits.shape[1]):
pred[(logits[:, i] > logits[:, 0]), i] = 1
pred[:, 0] = (pred.sum(1) == 0)
else:
pred = np.zeros((logits.shape[0], logits.shape[1] + 1))
for i in range(logits.shape[1]):
pred[(logits[:, i] > 0.), i + 1] = 1
pred[:, 0] = (pred.sum(1) == 0)
preds.append(pred)
labels.append(batch[2])
sims_list.append(sims)
preds = np.concatenate(preds, axis=0).astype(np.float32)
ans = to_official(preds, features)
pickle.dump(sims_list, open(os.path.join(args.save_path, f"{tag}_sims.pkl"), 'wb'))
pickle.dump(model.mu_encoder.memory_tokens.data.cpu().numpy(), open(os.path.join(args.save_path, f"{tag}_mem.pkl"), 'wb'))
pickle.dump(preds, open(os.path.join(args.save_path, f"{tag}_preds.pkl"), 'wb'))
pickle.dump(ans, open(os.path.join(args.save_path, f"{tag}_ans.pkl"), 'wb'))
pickle.dump(labels, open(os.path.join(args.save_path, f"{tag}_labels.pkl"), 'wb'))
if len(ans) > 0:
if eval_top_10:
best_f1, _, best_f1_ign, re_f1_ignore_train, re_p, re_r = official_evaluate(ans, args.data_dir, tag='testtop10', args=args)
print("top10", best_f1, best_f1_ign, re_p, re_r)
best_f1, _, best_f1_ign, re_f1_ignore_train, re_p, re_r = official_evaluate(ans, args.data_dir, tag='testbottom90', args=args)
print("testbottom90", best_f1, best_f1_ign, re_p, re_r)
best_f1, _, best_f1_ign, re_f1_ignore_train, re_p, re_r = official_evaluate(ans, args.data_dir, tag, args)
output = {
tag + "_F1": best_f1 * 100,
tag + "_F1_ign": best_f1_ign * 100,
"re_p": re_p * 100,
"re_r": re_r * 100,
}
else:
best_f1, best_f1_ign = -1, -1
output = {
tag + "_F1": best_f1 * 100,
tag + "_F1_ign": best_f1_ign * 100,
}
return best_f1, output
def cal_val_risk_bio(args, model, features):
dataloader = DataLoader(features, batch_size=args.test_batch_size, shuffle=False, collate_fn=collate_fn, drop_last=False)
val_risk = []
nums = 0
for batch in dataloader:
model.eval()
inputs = {'input_ids': batch[0].to(args.device),
'attention_mask': batch[1].to(args.device),
'labels': batch[2],
'entity_pos': batch[3],
'hts': batch[4],
}
with torch.no_grad():
# risk, logits = model(**inputs)
# val_risk += risk.item()
output = model(**inputs)
# logits = output[1]
val_risk.append(np.array([risk.item() for risk in output[0]]))
nums += 1
# return val_risk / nums
return np.stack(val_risk, axis=0).sum(axis=0) / nums, output
def evaluate_bio(args, model, features, tag="test"):
dataloader = DataLoader(features, batch_size=args.test_batch_size, shuffle=False, collate_fn=collate_fn, drop_last=False)
preds = []
golds = []
for batch in dataloader:
model.eval()
inputs = {'input_ids': batch[0].to(args.device),
'attention_mask': batch[1].to(args.device),
'entity_pos': batch[3],
'hts': batch[4],
}
with torch.no_grad():
logits = model(**inputs)
logits = logits.cpu().numpy()
if args.isrank:
pred = np.zeros((logits.shape[0], logits.shape[1]))
for i in range(1, logits.shape[1]):
pred[(logits[:, i] > logits[:, 0]), i] = 1
pred[:, 0] = (pred.sum(1) == 0)
else:
pred = np.zeros((logits.shape[0], logits.shape[1] + 1))
for i in range(logits.shape[1]):
pred[(logits[:, i] > 0.), i + 1] = 1
pred[:, 0] = (pred.sum(1) == 0)
preds.append(pred)
labels = [np.array(label, np.float32) for label in batch[2]]
golds.append(np.concatenate(labels, axis=0))
preds = np.concatenate(preds, axis=0).astype(np.float32)
preds = preds[:,1:]
golds = np.concatenate(golds, axis=0).astype(np.float32)[:,1:]
TPs = preds * golds # (N, R)
TP = TPs.sum()
P = preds.sum()
T = golds.sum()
micro_p = TP / P if P != 0 else 0
micro_r = TP / T if T != 0 else 0
micro_f = 2 * micro_p * micro_r / \
(micro_p + micro_r) if micro_p + micro_r > 0 else 0
mi_output = {
tag + "_F1": micro_f * 100,
"re_p": micro_p * 100,
"re_r": micro_r * 100,
}
return micro_f, mi_output
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", default="./dataset/docred", type=str)
parser.add_argument("--transformer_type", default="bert", type=str)
parser.add_argument("--model_name_or_path", default="bert-base-cased", type=str)
parser.add_argument("--model_type", default="ATLOP", type=str)
parser.add_argument("--train_file", default="train_annotated.json", type=str)
parser.add_argument("--distant_file", default="train_distant.json", type=str)
parser.add_argument("--dev_file", default="dev.json", type=str)
parser.add_argument("--test_file", default="test.json", type=str)
parser.add_argument("--save_path", default="out", type=str)
parser.add_argument("--load_path", default="", type=str)
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--max_seq_length", default=1024, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--train_batch_size", default=4, type=int,
help="Batch size for training.")
parser.add_argument("--test_batch_size", default=8, type=int,
help="Batch size for testing.")
parser.add_argument("--gradient_accumulation_steps", default=1, type=int,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--adam_epsilon", default=1e-6, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--warmup_ratio", default=0.06, type=float,
help="Warm up ratio for Adam.")
parser.add_argument("--num_train_epochs", default=30.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--evaluation_steps", default=-1, type=int,
help="Number of training steps between evaluations.")
parser.add_argument("--seed", type=int, default=66,
help="random seed for initialization")
parser.add_argument("--num_class", type=int, default=97,
help="Number of relation types in dataset.")
parser.add_argument("--isrank", type=int, default='1 means use ranking loss, 0 means not use')
parser.add_argument("--m_tag", type=str, default='PN/PU/S-PU')
parser.add_argument('--beta', type=float, default=0.0, help='beta of pu learning (default 0.0)')
parser.add_argument('--gamma', type=float, default=1.0, help='gamma of pu learning (default 1.0)')
parser.add_argument('--m', type=float, default=1.0, help='margin')
parser.add_argument('--e', type=float, default=3.0, help='estimated a priors multiple')
parser.add_argument('--pretrain_distant', type=int, default=0, help='whether to pretrain distant and then quit')
parser.add_argument('--num_layers', type=int, default=2, help="num_layers for ttm")
parser.add_argument('--memory_size', type=int, default=200, help="memory_size for ttm, originally 200, cut to new_memory_size")
args = parser.parse_args()
# assert args.is_rank == 1
file_name = "{}_{}_{}_{}_{}_isrank_{}_m_{}_e_{}_seed_{}".format(
args.train_file.split('.')[0],
args.transformer_type,
args.model_type,
args.data_dir.split('/')[-1],
args.m_tag,
str(args.isrank),
args.m,
args.e,
str(args.seed))
args.save_path = os.path.join(args.save_path, file_name)
if not os.path.exists(args.save_path):
os.mkdir(args.save_path)
print(args.save_path)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
args.n_gpu = torch.cuda.device_count()
args.device = device
# print({k:str(v) for k,v in vars(args).items()}); quit()
config = AutoConfig.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
num_labels=args.num_class,
)
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
)
if "chemdisgene" in args.data_dir.lower():
read = read_chemdisgene
else:
read = read_docred
train_file = os.path.join(args.data_dir, args.train_file)
dev_file = os.path.join(args.data_dir, args.dev_file)
test_file = os.path.join(args.data_dir, args.test_file)
train_features, priors = read(args, train_file, tokenizer, max_seq_length=args.max_seq_length)
dev_features, _ = read(args, dev_file, tokenizer, max_seq_length=args.max_seq_length)
test_features, _ = read(args, test_file, tokenizer, max_seq_length=args.max_seq_length)
# train_features = train_features[:100]
# dev_features = dev_features[:100]
# test_features = test_features[:100]
# what if we use true priors?
# test_features, priors = read(args, test_file, tokenizer, max_seq_length=args.max_seq_length)
priors += 1e-9
# dev_features = train_features + dev_features
model = AutoModel.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
).to(args.device)
config.cls_token_id = tokenizer.cls_token_id
config.sep_token_id = tokenizer.sep_token_id
config.transformer_type = args.transformer_type
set_seed(args)
# print('priors', priors); quit()
priors = torch.tensor(priors).to(args.device)
model = DocREModel(args, config, priors, model, tokenizer)
model.to(0)
print(args.m_tag, args.isrank)
if args.load_path == "": # Training
if args.model_type in ['simple', 'ttmre', 'ATLOP']:
print("PRETRAINING")
print("pretrain distant", args.pretrain_distant)
temp_epochs = args.num_train_epochs
args.num_train_epochs = 2
if args.pretrain_distant == 0: # pretrain on train and quit()
train(args, model, train_features, dev_features, lr=1e-4)
torch.save(model.state_dict(), os.path.join(args.save_path, "pretrain_state_dict.pth")); quit()
if args.pretrain_distant == 1: # pretrain on distant and quit()
if os.path.isfile(f"./distant_features_{args.model_name_or_path}.pkl"):
distant_features = pickle.load(open(f"./distant_features_{args.model_name_or_path}.pkl", 'rb'))
else:
distant_file = os.path.join(args.data_dir, args.distant_file)
distant_features, _ = read(args, distant_file, tokenizer, max_seq_length=args.max_seq_length)
train(args, model, distant_features, dev_features, lr=5e-5)
torch.save(model.state_dict(), os.path.join(args.save_path, "pretrain_state_dict.pth")); quit()
if args.pretrain_distant == 2: # load pretrain and finetune on train
print("loading", os.path.join(args.save_path, "pretrain_state_dict.pth"))
model.load_state_dict(torch.load(os.path.join(args.save_path, "pretrain_state_dict.pth")))
# model.mu_encoder.memory_tokens.requires_grad_(False); print(model.mu_encoder.memory_tokens.requires_grad)
if args.memory_size != MEMORY_SIZE:
print("cutting memory size to ", args.memory_size)
model.mu_encoder.memory_tokens.data = model.mu_encoder.memory_tokens.data[:args.memory_size]
if "chemdisgene" in args.data_dir.lower():
test_score, test_output = evaluate_bio(args, model, test_features, tag="test")
else:
test_score, test_output = evaluate(args, model, test_features, tag="test")
# quit()
print("pretrain performance", test_output)
print("FINETUNING")
args.num_train_epochs = temp_epochs
model.train_mode = 'finetune'
# if args.pretrain_distant == 3: # finetune on train only, no pretrain
if args.pretrain_distant == 2 or args.pretrain_distant == 3:
train(args, model, train_features, dev_features, save_best_val=True, save_after_epoch=0, lr=1e-5,
test_features=test_features)
# train(args, model, train_features, dev_features, save_best_val=False)
torch.save(model.state_dict(), os.path.join(args.save_path, "finetune_state_dict.pth"))
print("TEST")
# if 4, just load finetune_state_dict and eval
model.load_state_dict(torch.load(os.path.join(args.save_path, "finetune_state_dict.pth")))
test_score, test_output = evaluate(args, model, test_features, tag="test", eval_top_10=True)
print("finetune", test_output)
# dump test_output to json file
with open(os.path.join(args.save_path,'test_output.json'), 'w') as f:
json.dump(test_output, f)
# dump args to json file
with open(os.path.join(args.save_path,'args.json'), 'w') as f:
json.dump({k:str(v) for k,v in vars(args).items()}, f)
else: # Testing
args.load_path = os.path.join(args.load_path, file_name)
print(args.load_path)
print("TEST")
# model = amp.initialize(model, opt_level="O1", verbosity=0)
model.load_state_dict(torch.load(os.path.join(args.save_path, "state_dict.pth")))
test_score, test_output = evaluate(args, model, test_features, tag="test")
print(test_output)
if __name__ == "__main__":
main()