-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathrun_avg.sh
42 lines (33 loc) · 1.12 KB
/
run_avg.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#!/bin/bash
#SBATCH -N 1
#SBATCH --partition=batch
#SBATCH --array=1-6
#SBATCH -J avg
#SBATCH -o avg.%J.out
#SBATCH -e avg.%J.err
#SBATCH --time=00:30:00
#SBATCH --mem=64G
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=6
#SBATCH --gres=gpu:1
# load the module
module load pytorch/1.2.0-cuda10.0-cudnn7.6-py3.7
frac_values=( 0.1 )
bs_values=( 100 )
lr_values=( 1e-2 )
out_dim_values=( 1 )
type_values=( 'sms' 'call' 'net')
file_values=( 'milano.h5' 'trento.h5')
trial=${SLURM_ARRAY_TASK_ID}
frac=${frac_values[$(( trial % ${#frac_values[@]} ))]}
trial=$(( trial / ${#frac_values[@]} ))
bs=${bs_values[$(( trial % ${#bs_values[@]} ))]}
trial=$(( trial / ${#bs_values[@]} ))
lr=${lr_values[$(( trial % ${#lr_values[@]} ))]}
trial=$(( trial / ${#lr_values[@]} ))
out_dim=${out_dim_values[$(( trial % ${#out_dim_values[@]} ))]}
trial=$(( trial / ${#out_dim_values[@]} ))
type=${type_values[$(( trial % ${#type_values[@]} ))]}
trial=$(( trial / ${#type_values[@]} ))
file=${file_values[$(( trial % ${#file_values[@]} ))]}
python fed_avg_algo.py --file ${file} --type ${type} --lr ${lr} --frac ${frac} --bs ${bs} --opt 'sgd' --out_dim ${out_dim}