-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
99 lines (63 loc) · 2.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import json
import numpy as np
import torch
import torch.optim
import torch.nn as nn
from torch.utils.data import DataLoader
import preprocess
import lstm_class
#=======================================#
# Preprocessing Parameters #
#=======================================#
n = 9 #2 # Number of words used in prediction
min_occurences = 10 #1 # Minimum number of occurences of a word for it to occur in vocabulary
batch_size = 32 #1
#=======================================#
# Preprocessing #
#=======================================#
lotr_full_text = preprocess.load_full_text()
word_to_id, id_to_word = preprocess.get_vocab(lotr_full_text, min_occurences)
lotr_full_ids = [word_to_id[word] for word in lotr_full_text]
training_dataset = preprocess.get_tensor_dataset(lotr_full_ids, n)
training_loader = DataLoader(training_dataset, batch_size=batch_size, drop_last=True, shuffle=True)
#=======================================#
# Network Parameters #
#=======================================#
# Size parameters
vocab_size = len(word_to_id) + 1
embedding_dim = 256 # size of the word embeddings
hidden_dim = 256 # size of the hidden state
n_layers = 2 # number of LSTM layers
# Training parameters
epochs = 14 #10
learning_rate = 0.001
clip = 1
#=======================================#
# Initialize/Train Network #
#=======================================#
net = lstm_class.LSTM(vocab_size, embedding_dim, hidden_dim, n_layers)
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)
loss_func = torch.nn.CrossEntropyLoss()
net.train()
for e in range(epochs):
print(f'Epoch {e}')
hidden = net.init_hidden(batch_size)
# loops through each batch
for features, labels in training_loader:
# resets training history
hidden = tuple([each.data for each in hidden])
net.zero_grad()
# computes gradient of loss from backprop
output, hidden = net.forward(features, hidden)
loss = loss_func(output, labels)
loss.backward()
# using clipping to avoid exploding gradient
nn.utils.clip_grad_norm_(net.parameters(), clip)
optimizer.step()
#=======================================#
# Saves Trained Network #
#=======================================#
net.eval()
torch.save(net, 'trained_model/trained_model.pt')
with open('trained_model/word_to_id.json', 'w') as fp:
json.dump(word_to_id, fp, indent=4)