-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathgenerate_text.py
87 lines (58 loc) · 2.66 KB
/
generate_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from collections import Counter
import json
import re
import torch
import torch.nn as nn
import numpy as np
import lstm_class
import preprocess
#=======================================#
# Reformat Function #
#=======================================#
def add_formatting(list_of_ids, id2word, should_capitalize):
words = [id2word[id] for id in list_of_ids]
for i in range(1, len(words)):
prev = words[i-1]
cur = words[i]
if (prev in [".", "!", "?"]) or (cur in should_capitalize and should_capitalize[cur]):
if words[i] != "<Unknown>":
words[i] = cur.capitalize()
string = ' '.join(words[1:])
string = re.sub('Mr ', 'Mr. ', string) # Changes Mr back to Mr.
string = re.sub(r'\s([,.!?:;])', r'\1', string) # Removes sapce before punctuation
return string
#===========================================#
# Predict Next ID Function #
#===========================================#
def predict_next_id(network, ids_list, batch_size=1, temp=0.8):
softmax = nn.Softmax(dim=0)
#batch size is 1 as it is a single input
hidden = network.init_hidden(batch_size)
input = torch.tensor([ids_list])
output, hidden = network.forward(input, hidden)
last_word_logits = output.squeeze()
predicted_probabilities = softmax(last_word_logits / temp).detach().numpy()
# Sets probability of generating the <Unknown> token to 0,
predicted_probabilities[0] = 0
# Sets probability of repeating last token to 0
predicted_probabilities[ids_list[-1]] = 0
# Adjusts so probabilities still sum to 1
predicted_probabilities = predicted_probabilities / np.sum(predicted_probabilities)
# Picks a probability-weighted random choice of the words
prediction = np.random.choice(len(last_word_logits), p=predicted_probabilities)
return prediction
#===========================================#
# Full Predictions Function #
#===========================================#
def prediction(network, word2id, id2word, should_capitalize, user_input, n, num_sentences):
seed_text = preprocess.parse_and_clean(user_input)
ids = [word2id["."]] + [word2id[word] for word in seed_text.split()]
finished_sentences = 0
while (finished_sentences < num_sentences):
last_n_ids = ids[-n:]
prediction = predict_next_id(network, last_n_ids)
ids.append(prediction)
if prediction in [word2id["."], word2id["!"], word2id["?"]]:
finished_sentences += 1
predicted_string = add_formatting(ids, id2word, should_capitalize)
return predicted_string