Skip to content

Tika-Similarity uses the Tika-Python package (Python port of Apache Tika) to compute file similarity based on Metadata features.

License

Notifications You must be signed in to change notification settings

chrismattmann/tika-similarity

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Apache Tika File Similarity based on Jaccard distance, Edit distance & Cosine distance

This project demonstrates the usage of the Tika-Python package (Python port of Apache Tika) to compute file similarity based on metadata features.

The script can iterate over all files in the current directory, or specific files by command line, derive their metadata features, and compute the union of all features. The union of all features becomes the "golden feature set" that all document features are compared to via intersect. The length of that intersect per file divided by the length of the unioned set becomes the similarity score.

Scores are sorted in reverse (descending) order which can be shown in three different Data-Driven document visualizaions. A companion project to this effort is Auto Extractor which uses Apache Spark and Apache Nutch to take web crawl data, and produce D3-visualizations and clusters of similar pages.

Pre-requisite

Installation

git clone https://github.com/chrismattmann/tika-img-similarity
pip install tika editdistance

You can also check out ETLlib

How to use

Optional: Compute similarity only on specific IANA MIME Type(s) inside a directory using --accept

Key-based comparison

This compares metadata feature names as a golden feature set

#!/usr/bin/env python
python similarity.py -f [directory of files] [--accept [jpeg pdf etc...]]
or 
python similarity.py -c [file1 file2 file3 ...]

Value-based comparison

This compares metadata feature names together with its value as a golden feature set

#!/usr/bin/env python
python value-similarity.py -f [directory of files] [--accept [jpeg pdf etc...]]
or 
python value-similarity.py -c [file1 file2 file3 ...]

Edit Distance comparison on Metadata Values

  • This computes pairwise similarity scores based on Edit Distance Similarity.
  • Similarity Score of 1 implies an identical pair of documents.
#!/usr/bin/env python
python edit-value-similarity.py [-h] --inputDir INPUTDIR --outCSV OUTCSV [--accept [png pdf etc...]] [--allKeys]

--inputDir INPUTDIR  path to directory containing files

--outCSV OUTCSV      path to directory for storing the output CSV File, containing pair-wise Similarity Scores based on Edit distance

--accept [ACCEPT]    Optional: compute similarity only on specified IANA MIME Type(s)

--allKeys            Optional: compute edit distance across all metadata keys of 2 documents, else default to only intersection of metadata keys

Eg: python edit-value-similarity.py --inputDir /path/to/files --outCSV /path/to/output.csv --accept png pdf gif

Cosine Distance comparison on Metadata Values

  • This computes pairwise similarity scores based on Cosine Distance Similarity.
  • Similarity Score of 1 implies an identical pair of documents.
#!/usr/bin/env python
python cosine_similarity.py [-h] --inputDir INPUTDIR --outCSV OUTCSV [--accept [png pdf etc...]]

--inputDir INPUTDIR  path to directory containing files

--outCSV OUTCSV      path to directory for storing the output CSV File, containing pair-wise Similarity Scores based on Cosine distance

--accept [ACCEPT]    Optional: compute similarity only on specified IANA MIME Type(s)

Similarity based on Stylistic/Authorship features

  • This calculates pairwise cosine similarity on bag of signatures/features produced by extracting stylistic/authorship features from text.
#!/usr/bin/env python
python psykey.py --inputDir INPUTDIR --outCSV OUTCSV --wordlists WRODLIST_FOLDER

--inputDir INPUTDIR  path to directory containing files

--outCSV OUTCSV      path to directory for storing the output CSV File, containing pair-wise Similarity Scores based on Cosine distance of stylistic and authorship features

--wordlists WRODLIST_FOLDER    path to the folder that contains files that are word list belonging to different classes. eg Use the wordlist folder provided with the tika-similarity library. If adding your own, make sure that the file is .txt with one word per line. Also, the name of the file will be considered the name of the class.

D3 visualization

Cluster viz

  • Jaccard Similarity
* python cluster-scores.py [-t threshold_value] (for generating cluster viz)
* open cluster-d3.html(or dynamic-cluster.html for interactive viz) in your browser
  • Edit Distance & Cosine Similarity
* python edit-cosine-cluster.py --inputCSV <PATH TO CSV FILE> --cluster <INTEGER OPTION> (for generating cluster viz)

  <PATH TO CSV FILE> - Path to CSV file generated by running edit-value-similarity.py or cosine_similarity.py
  <INTEGER OPTION> - Pass 0 to cluster based on x-coordinate, 1 to cluster based on y-coordinate, 2 to cluster based on similarity score

* open cluster-d3.html(or dynamic-cluster.html for interactive viz) in your browser

Default threshold value is 0.01.

Circlepacking viz

  • Jaccard Similarity
* python circle-packing.py (for generating circlepacking viz)
* open circlepacking.html(or dynamic-circlepacking.html for interactive viz) in your browser
  • Edit Distance & Cosine Similarity
* python edit-cosine-circle-packing.py --inputCSV <PATH TO CSV FILE> --cluster <INTEGER OPTION> (for generating circlepacking viz)

  <PATH TO CSV FILE> - Path to CSV file generated by running edit-value-similarity.py or cosine_similarity.py
  <INTEGER OPTION> - Pass 0 to cluster based on x-coordinate, 1 to cluster based on y-coordinate, 2 to cluster based on similarity score


* open circlepacking.html(or dynamic-circlepacking.html for interactive viz) in your browser

Composite viz

This is a combination of cluster viz and circle packing viz. The deeper color, the more the same attributes in the cluster.

* open compositeViz.html in your browser

Image of composite viz

Big data way

if you are dealing with big data, you can use it this way:

* python generateLevelCluster.py (for generating level cluster viz)
* open levelCluster-d3.html in your browser

You can set max number for each node _maxNumNode(default _maxNumNode = 10) in generateLevelCluster.py Image of level composite viz

Questions, comments?

Send them to Chris A. Mattmann.

Contributors

  • Chris A. Mattmann, JPL
  • Dongni Zhao, USC
  • Harshavardhan Manjunatha, USC
  • Thamme Gowda, USC
  • Ayberk Yılmaz, USC
  • Aravind Ram, USC
  • Aishwarya Parameshwaran, USC
  • Rashmi Nalwad, USC
  • Asitang Mishra, JPL
  • Suzanne Stathatos, JPL

License

This project is licensed under the Apache License, version 2.0.