forked from PyMesh/PyMesh
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeshstat.py
executable file
·352 lines (306 loc) · 13.9 KB
/
meshstat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#!/usr/bin/env python
"""
Print out useful info about an input mesh.
"""
from __future__ import print_function
import argparse
import json
import numpy as np
import pymesh
import os.path
from print_utils import print_bold, print_header, print_green, print_red
def print_property(name, val, expected=None):
if expected is not None and val != expected:
print_red("{:-<48}: {}".format(name, val));
else:
print("{:-<48}: {}".format(name, val));
def print_section_header(val):
print_green("{:_^55}".format(val));
def print_basic_info(mesh, info):
print_section_header("Basic information");
print("dim: {}".format(mesh.dim));
num_vertices = mesh.num_vertices;
num_faces = mesh.num_faces;
num_voxels = mesh.num_voxels;
print("#v: {}\t#f: {}\t#V: {}".format(
num_vertices, num_faces, num_voxels));
print("vertex per face : {}".format(mesh.vertex_per_face));
print("vertex per voxel: {}".format(mesh.vertex_per_voxel));
info["num_vertices"] = num_vertices;
info["num_faces"] = num_faces;
info["num_voxels"] = num_voxels;
info["vertex_per_face"] = mesh.vertex_per_face;
info["vertex_per_voxel"] = mesh.vertex_per_voxel;
def print_bbox(mesh, info):
print_section_header("Boundding box");
if mesh.num_vertices == 0:
print_red("Cannot compute bbox on empty mesh.");
return;
bbox_min, bbox_max = mesh.bbox;
if mesh.dim == 3:
print_format = "[{v[0]:^10.6g} {v[1]:^10.6g} {v[2]:^10.6g}]";
elif mesh.dim == 2:
print_format = "[{v[0]:^10.6g} {v[1]:^10.6g}]";
print("bbox_min: " + print_format.format(v=bbox_min));
print("bbox_max: " + print_format.format(v=bbox_max));
print("bbox_size: " + print_format.format(v=bbox_max - bbox_min));
info["bbox_min"] = bbox_min.tolist();
info["bbox_max"] = bbox_max.tolist();
def quantile_breakdown(data, name, info, title=None, with_total=True):
if title is None:
title = "{} info".format(name.capitalize());
print_section_header(title);
if len(data) == 0:
print_red("Empty");
return;
# Filter out inf/nan values.
is_valid = np.isfinite(data);
data = data[is_valid];
num_bad_values = len(is_valid) - len(data);
info["bad_{}".format(name)] = num_bad_values;
if not np.all(is_valid):
print_red("Skipping {} non-finite values".format(num_bad_values));
ave = np.mean(data);
ave_text = "ave: {:.6g}".format(ave);
print("{: <27}".format(ave_text), end="");
if with_total:
total = np.sum(data);
total_text = "total: {:.6g}".format(total);
print("{: >28}".format(total_text));
else:
print();
p0, p25, p50, p75, p90, p95, p100 =\
np.percentile(data, [0, 25, 50, 75, 90, 95, 100]);
table_format = "{:^7.3} {:^7.3} {:^7.3} {:^7.3} {:^7.3} {:^7.3} {:^7.3}";
print(table_format.format("min", "25%", "50%", "75%", "90%", "95%", "max"));
print(table_format.format(p0, p25, p50, p75, p90, p95, p100));
info["ave_{}".format(name)] = ave;
info["min_{}".format(name)] = p0;
info["p25_{}".format(name)] = p25;
info["median_{}".format(name)] = p50;
info["p75_{}".format(name)] = p75;
info["p90_{}".format(name)] = p90;
info["p95_{}".format(name)] = p95;
info["max_{}".format(name)] = p100;
if with_total:
info["total_{}".format(name)] = total;
def print_edge_info(mesh, info):
if (mesh.num_faces == 0): return;
mesh.add_attribute("edge_length");
edge_length = mesh.get_attribute("edge_length");
quantile_breakdown(edge_length, "edge_length", info,
title = "Edge Length", with_total=False);
def print_face_info(mesh, info):
if (mesh.num_faces == 0): return;
mesh.add_attribute("face_area");
face_areas = mesh.get_attribute("face_area");
quantile_breakdown(face_areas, "area", info);
def print_quantile_info(mesh, info):
mesh.add_attribute("vertex_valance");
vertex_valance = mesh.get_attribute("vertex_valance");
quantile_breakdown(vertex_valance, "valance", info,
title = "Vertex Valance", with_total=False);
mesh.add_attribute("face_aspect_ratio");
aspect_ratios = mesh.get_attribute("face_aspect_ratio");
quantile_breakdown(aspect_ratios, "aspect_ratio", info,
title = "Face Aspect Ratio", with_total=False);
if mesh.dim == 3:
mesh.add_attribute("edge_dihedral_angle");
dihedral_angles = mesh.get_attribute("edge_dihedral_angle");
quantile_breakdown(dihedral_angles, "dihedral_angle", info,
title = "Edge Dihedral Angle", with_total=False);
if (mesh.num_voxels > 0 and mesh.vertex_per_voxel == 4):
mesh.add_attribute("voxel_dihedral_angle");
voxel_dihedral_angle = mesh.get_attribute("voxel_dihedral_angle");
voxel_dihedral_angle = voxel_dihedral_angle.reshape((-1, 6));
min_voxel_dihedral_angle = np.amin(voxel_dihedral_angle, axis=1);
max_voxel_dihedral_angle = np.amax(voxel_dihedral_angle, axis=1);
quantile_breakdown(min_voxel_dihedral_angle,
"voxel_min_dihedral_angle", info,
title="Per-voxel min dihedral Angle", with_total=False);
quantile_breakdown(max_voxel_dihedral_angle,
"voxel_max_dihedral_angle", info,
title="Per-voxel max dihedral Angle", with_total=False);
mesh.add_attribute("voxel_edge_ratio");
edge_ratio = mesh.get_attribute("voxel_edge_ratio");
quantile_breakdown(edge_ratio, "voxel_edge_ratio", info,
title="Voxel edge ratio", with_total=False);
mesh.add_attribute("voxel_inradius");
mesh.add_attribute("voxel_circumradius");
inradius = mesh.get_attribute("voxel_inradius").ravel();
circumradius = mesh.get_attribute("voxel_circumradius").ravel();
radius_ratio = np.divide(inradius, circumradius);
quantile_breakdown(radius_ratio, "voxel_radius_ratio", info,
title="Voxel radius ratio", with_total=False);
def print_voxel_info(mesh, info):
if mesh.dim == 2:
return;
if (mesh.num_voxels == 0):
print_section_header("Volume Estimation");
volume = mesh.volume;
print("volume estimation: {:.6g}".format(volume));
info["volume_estimation"] = volume;
else:
mesh.add_attribute("voxel_volume");
voxel_volume = mesh.get_attribute("voxel_volume");
quantile_breakdown(voxel_volume, "volume", info);
def print_extended_info(mesh, info):
print_section_header("Extended info");
num_cc = mesh.num_components;
num_f_cc = mesh.num_surface_components;
if mesh.num_voxels > 0:
num_v_cc = mesh.num_volume_components;
else:
num_v_cc = 0;
isolated_vertices = mesh.num_isolated_vertices;
duplicated_faces = mesh.num_duplicated_faces;
unique_vertices = pymesh.unique_rows(mesh.vertices)[0];
duplicated_vertices = mesh.num_vertices - len(unique_vertices);
degenerated_indices = pymesh.get_degenerated_faces(mesh);
num_degenerated = len(degenerated_indices);
if num_degenerated > 0:
degenerated_faces = mesh.faces[degenerated_indices];
combinatorially_degenerated_faces = \
[f for f in degenerated_faces if len(set(f)) != len(f) ];
num_combinatorial_degenerated_faces =\
len(combinatorially_degenerated_faces);
else:
num_combinatorial_degenerated_faces = 0;
print_property("num connected components", num_cc);
print_property("num connected surface components", num_f_cc);
print_property("num connected volume components", num_v_cc);
print_property("num isolated vertices", isolated_vertices, 0);
print_property("num duplicated vertices", duplicated_vertices, 0);
print_property("num duplicated faces", duplicated_faces, 0);
print_property("num boundary edges", mesh.num_boundary_edges);
print_property("num boundary loops", mesh.num_boundary_loops);
print_property("num degenerated faces", num_degenerated, 0)
if num_degenerated > 0:
print_property(" combinatorially degenerated",
num_combinatorial_degenerated_faces, 0);
print_property(" geometrically degenerated",
num_degenerated - num_combinatorial_degenerated_faces, 0);
info["num_connected_components"] = num_cc;
info["num_connected_surface_components"] = num_f_cc;
info["num_connected_volume_components"] = num_v_cc;
info["num_isolated_vertices"] = isolated_vertices;
info["num_duplicated_vertices"] = duplicated_vertices;
info["num_duplicated_faces"] = duplicated_faces;
info["num_boundary_edges"] = mesh.num_boundary_edges;
info["num_boundary_loops"] = mesh.num_boundary_loops;
info["num_degenerated_faces"] = num_degenerated;
info["num_combinatorial_degenerated_faces"] =\
num_combinatorial_degenerated_faces;
info["num_geometrical_degenerated_faces"] =\
num_degenerated - num_combinatorial_degenerated_faces;
if mesh.dim == 2 and mesh.vertex_per_face == 3:
tri_orientations = pymesh.get_triangle_orientations(mesh);
num_inverted_tris = np.sum(tri_orientations < 0);
print_property("num inverted triangles:", num_inverted_tris, 0);
info["num_inverted_triangles"] = int(num_inverted_tris);
if mesh.num_voxels > 0 and mesh.vertex_per_voxel == 4:
tet_orientations = pymesh.get_tet_orientations(mesh);
num_degenerate_tets = np.sum(tet_orientations == 0);
num_inverted_tets = np.sum(tet_orientations < 0);
print_property("num degenerated tets:", num_degenerate_tets, 0);
print_property("num inverted tets:", num_inverted_tets, 0);
info["num_degenerated_tets"] = int(num_degenerate_tets);
info["num_inverted_tets"] = int(num_inverted_tets);
is_closed = mesh.is_closed();
is_edge_manifold = mesh.is_edge_manifold();
is_vertex_manifold = mesh.is_vertex_manifold();
is_oriented = mesh.is_oriented();
euler = mesh.euler_characteristic;
print_property("oriented", is_oriented, True);
print_property("closed", is_closed, True)
print_property("edge manifold", is_edge_manifold, True);
print_property("vertex manifold", is_vertex_manifold, True);
print_property("euler characteristic", euler);
info["oriented"] = is_oriented;
info["closed"] = is_closed;
info["vertex_manifold"] = is_vertex_manifold;
info["edge_manifold"] = is_edge_manifold;
info["euler_characteristic"] = euler;
def coplanar_analysis(mesh, intersecting_faces):
intersect_and_coplanar = set();
vertices = mesh.vertices;
faces = mesh.faces;
for fi, fj in intersecting_faces:
p0 = vertices[faces[fi, 0]];
p1 = vertices[faces[fi, 1]];
p2 = vertices[faces[fi, 2]];
q0 = vertices[faces[fj, 0]];
q1 = vertices[faces[fj, 1]];
q2 = vertices[faces[fj, 2]];
if pymesh.orient_3D(p0, p1, p2, q0) == 0 and \
pymesh.orient_3D(p0, p1, p2, q1) == 0 and \
pymesh.orient_3D(p0, p1, p2, q2) == 0:
intersect_and_coplanar.add(fi);
intersect_and_coplanar.add(fj);
return intersect_and_coplanar;
def print_self_intersection_info(mesh, info):
if mesh.vertex_per_face == 4:
print_red("Converting quad to tri for self-intersection check.");
mesh = pymesh.quad_to_tri(mesh);
if mesh.num_vertices == 0 or mesh.num_faces == 0:
num_intersections = 0;
num_coplanar_intersecting_faces = 0;
else:
intersecting_faces = pymesh.detect_self_intersection(mesh);
num_intersections = len(intersecting_faces);
intersect_and_coplanar = coplanar_analysis(mesh, intersecting_faces);
num_coplanar_intersecting_faces = len(intersect_and_coplanar);
info["self_intersect"] = num_intersections > 0;
info["num_self_intersections"] = num_intersections;
info["num_coplanar_intersecting_faces"] = num_coplanar_intersecting_faces;
print_property("self intersect", info["self_intersect"], False);
if num_intersections > 0:
print_property("num self intersections", num_intersections, 0);
print_property("num coplanar intersecting faces",
num_coplanar_intersecting_faces, 0);
def load_info(mesh_file):
basename, ext = os.path.splitext(mesh_file);
info_file = basename + ".info";
info = {};
if os.path.exists(info_file):
with open(info_file, 'r') as fin:
try:
info = json.load(fin);
except ValueError:
print_red("Cannot parse {}, overwriting it".format(info_file));
return info;
def dump_info(mesh_file, info):
basename, ext = os.path.splitext(mesh_file);
info_file = basename + ".info";
with open(info_file, 'w') as fout:
json.dump(info, fout, indent=4, sort_keys=True);
def parse_args():
parser = argparse.ArgumentParser(description=__doc__);
parser.add_argument("--extended", "-x", action="store_true",
help="check for manifold, closedness, connected components and more ");
parser.add_argument("--self-intersection", "-s", action="store_true",
help="check for self-intersection, maybe slow");
parser.add_argument("--export", "-e", action="store_true",
help="export stats into a .info file");
parser.add_argument("input_mesh", help="input mesh file");
return parser.parse_args();
def main():
args = parse_args();
mesh = pymesh.load_mesh(args.input_mesh, drop_zero_dim=True);
info = load_info(args.input_mesh);
header = "Summary of {}".format(args.input_mesh);
print_header("{:=^55}".format(header));
print_basic_info(mesh, info);
print_bbox(mesh, info);
print_edge_info(mesh, info);
print_face_info(mesh, info);
print_voxel_info(mesh, info);
if (args.extended):
print_quantile_info(mesh, info);
print_extended_info(mesh, info);
if (args.self_intersection):
print_self_intersection_info(mesh, info);
if (args.export):
dump_info(args.input_mesh, info);
if __name__ == "__main__":
main();