-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab2.py
100 lines (86 loc) · 2.81 KB
/
lab2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
def print_matrix(matr):
for _ in range(len(matr)):
for j in range(len(matr[_])):
print(format(matr[_][j], ',.4f'), end=' ')
print()
print()
def find_main(matr, k):
a_main = (matr[k][k], (0, 0))
for _ in range(len(matr)):
for j in range(len(matr[_]) - 1):
if a_main[0] < abs(matr[_][j]):
a_main = (abs(matr[_][j]), (_, j))
if k != len(matr) - 1:
temporl.append((k, a_main[1][1]))
matr[k], matr[a_main[1][0]] = matr[a_main[1][0]], matr[k]
for _ in range(len(matr)):
matr[_][k], matr[_][a_main[1][1]] = matr[_][a_main[1][1]], matr[_][k]
def find_m_fact(matr, k):
m_factors = []
for _ in range(len(matr)):
m_factors.append(matr[_][k] / matr[k][k])
return m_factors
def substract_m_fact(matr, m_factors, k):
for _ in range(len(matr)):
for j in range(len(matr[_])):
if _ > k:
matr[_][j] -= m_factors[_] * matr[k][j]
temp = matr[k][k]
for _ in range(len(matr) + 1):
matr[k][_] = matr[k][_] / temp + 0
return matr
def find_converse(matr):
matr.reverse()
for _ in range(len(matr)):
matr[_].reverse()
answ = []
for _ in range(len(matr)):
temp_answ = 0
for j in range(_ + 1):
if j == 0:
temp_answ = matr[_][0]
else:
temp_answ -= matr[_][j] * answ[j - 1]
answ.append(temp_answ)
return answ
def find_solution_slar(matr):
i = 0
while len(matr) > i:
find_main(matr, i)
print_matrix(matrix)
substract_m_fact(matr, find_m_fact(matr, i), i)
#print_matrix(matrix)
i += 1
print_matrix(matrix)
solut = find_converse(matr)
for el in temporl:
solut[el[1]], solut[el[0]] = solut[el[0]], solut[el[1]]
return solut
def find_vector_of_discrepancy(matr, answ):
vect = []
for _ in range(len(matr)):
tmp = 0
for j in range(len(matr[_]) - 1):
tmp += matr[_][j] * answ[j]
vect.append(tmp)
answer = []
for _ in range(len(vect)):
answer.append(matr[_][len(matr)] - vect[_])
for el in answer:
print(format(el, ',.16f'), end=' ')
if __name__ == "__main__":
temporl = []
matrix = [[8.30, 2.62, 4.10, 1.90, -10.65],
[3.92, 8.45, 8.78, 2.46, 12.21],
[3.77, 7.21, 8.04, 2.28, 15.45],
[2.21, 3.65, 1.69, 6.9, -8.35]]
print_matrix(matrix)
solution = find_solution_slar(matrix)
for elem in solution:
print(format(elem, ',.4f'), end=' ')
print()
matrix2 = [[8.30, 2.62, 4.10, 1.90, -10.65],
[3.92, 8.45, 8.78, 2.46, 12.21],
[3.77, 7.21, 8.04, 2.28, 15.45],
[2.21, 3.65, 1.69, 6.9, -8.35]]
find_vector_of_discrepancy(matrix2, solution)