-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_utils.py
314 lines (239 loc) · 10.4 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
from __future__ import division
import os
import csv
import random
import numpy as np
class DataSet(object):
def __init__(self, data, labels, seq_lengths):
assert data.shape[0] == labels.shape[0], (
'data.shape: {} labels.shape: {}'.format(data.shape, labels.shape))
self._data = data
self._labels = labels
self._seq_lengths = seq_lengths
self._num_examples = data.shape[0]
self._index_in_epoch = 0
def data(self):
return self._data
def labels(self):
return self._labels
def seq_lengths(self):
return self._seq_lengths
def num_examples(self):
return self._num_examples
def reset_index_in_epoch(self):
self._index_in_epoch = 0
def next_batch(self, batch_size, shuffle=True):
start = self._index_in_epoch
# Shuffle for the first epoch
if start == 0 and shuffle:
perm = np.arange(self._num_examples)
np.random.shuffle(perm)
self._data = self._data[perm]
self._labels = self._labels[perm]
self._seq_lengths = self._seq_lengths[perm]
if start + batch_size < self._num_examples:
self._index_in_epoch += batch_size
end = self._index_in_epoch
return self._data[start:end], self._labels[start:end], self._seq_lengths[start:end]
else:
self._index_in_epoch = 0
return self._data[start:], self._labels[start:], self._seq_lengths[start:]
def dense_to_one_hot(labels_dense, num_classes):
# Convert class labels from scalars to one-hot vector
num_labels = labels_dense.shape[0]
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels, num_classes), dtype='float32')
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1.0
return labels_one_hot
# Reference: https://github.com/fchollet/keras/blob/master/keras/preprocessing/sequence.py
def pad_sequence(sequence, max_seq_length, truncating='pre', dtype='float32', value=0.0):
"""
Pad a sequence to the max_seq_length.
If a sequence is shorter than the max_seq_length,
add paddings to the end of the sequence.
If a sequence is longer than the max_seq_length,
truncate the the beginning or the end of the sequence.
"""
if not hasattr(sequence, '__len__'):
raise ValueError('sequence must be iterable.')
sample_shape = tuple()
sample_shape = np.asarray(sequence).shape[1:]
length = len(sequence)
padded_sequence = (np.ones((max_seq_length,) + sample_shape) * value).astype(dtype)
# truncation
if truncating == 'pre':
trunc = sequence[-max_seq_length:]
elif truncating == 'post':
trunc = sequence[:max_seq_length]
else:
raise ValueError('Truncating type "{}" not understood'.format(truncating))
# check 'trunc' has expected shape
trunc = np.asarray(trunc, dtype=dtype)
if trunc.shape[1:] != sample_shape:
raise ValueError('Shape of sample {} of sequence is different from expected shape {}'.
format(trunc.shape[1:], sample_shape))
# padding
padded_sequence[:len(trunc)] = trunc
if length > max_seq_length:
length = max_seq_length
return padded_sequence, length
def split_train_validation(class_dict, val_ratio):
train_data = []
train_labels = []
val_data = []
val_labels = []
split_msg = ''
for label in class_dict:
data = class_dict[label]
#val_size = int(len(data) * val_ratio)
# randomly shuffle data
#random.shuffle(data)
val_size = 20
val_data = val_data + data[:val_size]
val_labels = val_labels + [label] * len(data[:val_size])
train_data = train_data + data[val_size:]
train_labels = train_labels + [label] * len(data[val_size:])
split_msg += '\nClass {}: training data: {}, validation data: {}'.format(
label, len(data[val_size:]), val_size)
return train_data, train_labels, val_data, val_labels, split_msg
def slice_sequence(sequence, max_seq_length, interval=5):
length = sequence.shape[0]
limit = max(length-max_seq_length, 1)
start_idx = range(0, limit, 5)
slices = []
for i in start_idx:
if i + max_seq_length < length:
slices.append(sequence[i:i+max_seq_length, :])
else:
slices.append(sequence[i:, :])
return slices
def load_data(data_paths, max_seq_length, labels, trunc=False):
data = []
seq_lengths = []
new_labels = []
for i, path in enumerate(data_paths):
sequence = np.load(path)
label = labels[i]
if trunc == False:
slices = slice_sequence(sequence, max_seq_length=max_seq_length)
for s in slices:
padded_s, s_length = pad_sequence(s, max_seq_length=max_seq_length)
data.append(padded_s)
seq_lengths.append(s_length)
new_labels.append(label)
else:
padded_sequence, seq_length = pad_sequence(sequence, max_seq_length=max_seq_length, truncating='pre')
data.append(padded_sequence)
seq_lengths.append(seq_length)
new_labels.append(label)
return data, seq_lengths, new_labels
def sample_sub_sequences(length, num_samples, min_len, max_len):
max_len = min(length, max_len)
min_len = min(min_len, max_len)
sequence = []
for i in range(num_samples):
l = random.randint(min_len, max_len)
start_idx = random.randint(0, length - l)
end_idx = start_idx + l
if not (start_idx, end_idx) in sequence:
sequence.append((start_idx, end_idx))
return sequence
def multiply_data(sequences, lengths, labels, sample_ratio, extra_samples, min_len=5, max_len=30):
n = 0
new_sequences = []
new_lengths = []
new_labels = []
for i, seq in enumerate(sequences):
n += 1
label = labels[i]
length = lengths[i]
# Add original data to new training samples
new_sequences.append(seq)
new_lengths.append(length)
new_labels.append(label)
# Augment new training samples
samples = sample_sub_sequences(length, int(sample_ratio[label]*extra_samples),
min_len, max_len)
for s in samples:
n += 1
slice_range = range(s[0], s[1])
sub_length = s[1] - s[0]
sub_sequence = seq[slice_range,:]
padded_sub_sequence, _ = pad_sequence(sub_sequence, max_seq_length=max_len)
new_sequences.append(padded_sub_sequence)
new_lengths.append(sub_length)
new_labels.append(label)
return new_sequences, new_lengths, new_labels
def get_class_wise_count(labels):
counts = {}
for label in labels:
if counts.get(label, 'empty') == 'empty':
counts[label] = 1
else:
counts[label] += 1
return counts
def get_data_sets(data_file,
data_path,
one_hot = True,
val_ratio = 0.2,
max_seq_length = 30,
data_augmentation = True,
extra_samples = 4):
if not 0<= val_ratio < 1.0:
raise ValueError(
'Validation ratio should be between 0 and 1.0. Received: {}.'
.format(val_ratio))
class_dict = {}
with open(data_file, 'r') as f:
reader = csv.DictReader(f)
for i, row in enumerate(reader):
video_id = row['id']
video_path = os.path.join(data_path, video_id + '-feat.npy')
label = int(row['label'])
if class_dict.get(label, 'empty') == 'empty':
class_dict[label] = [video_path]
else:
class_dict[label].append(video_path)
train_data_paths, train_labels, val_data_paths, val_labels, split_msg = split_train_validation(class_dict, val_ratio)
train_data, train_seq_lengths, train_labels = load_data(train_data_paths, max_seq_length, train_labels)
if data_augmentation:
class_wise_count = get_class_wise_count(train_labels)
base_class = max(class_wise_count, key=class_wise_count.get)
sample_ratio = {}
for label in class_dict:
sample_ratio[label] = class_wise_count[base_class] / class_wise_count[label]
#print('sample ratio of {} : {}/{}={}'.format(
# label, class_wise_count[base_class], class_wise_count[label], sample_ratio[label]))
train_data, train_seq_lengths, train_labels = multiply_data(train_data, train_seq_lengths, train_labels, sample_ratio, extra_samples)
val_data, val_seq_lengths, val_labels = load_data(val_data_paths, max_seq_length, val_labels, trunc=True)
msg = ''
counts = get_class_wise_count(train_labels)
for label in counts:
msg += '\nClass {}: augmented training data: {}'.format(
label, counts[label])
train_data = np.array(train_data, dtype='float32')
#print('train_data.shape: {}'.format(train_data.shape))
val_data = np.array(val_data, dtype='float32')
#print('val_data.shape: {}'.format(val_data.shape))
train_labels = np.array(train_labels)
#print('train_labels.shape: {}'.format(train_labels.shape))
val_labels = np.array(val_labels)
#print('val_labels.shape: {}'.format(val_labels.shape))
train_seq_lengths = np.array(train_seq_lengths, dtype='int32')
val_seq_lengths = np.array(val_seq_lengths, dtype='int32')
#print('train_seq_lengths.sahpe: {}'.format(train_seq_lengths.shape))
#print('val_seq_lengths.shape: {}'.format(val_seq_lengths.shape))
if one_hot:
train_labels = dense_to_one_hot(train_labels, 4)
val_labels = dense_to_one_hot(val_labels, 4)
train = DataSet(train_data, train_labels, train_seq_lengths)
validation = DataSet(val_data, val_labels, val_seq_lengths)
msg = split_msg + msg
return train, validation, msg
if __name__ == '__main__':
train_file = '/tmp3/chiawen/TVHI/train_file.csv'
train_data_feat = '/tmp3/chiawen/TVHI/features/'
train, validation, msg = get_data_sets(train_file, train_data_feat, one_hot=True, val_ratio=0.2, max_seq_length=30)
print('training data size: {}'.format(train.num_examples()))
print('validation data size: {}'.format(validation.num_examples()))
print(msg)