-
Notifications
You must be signed in to change notification settings - Fork 179
/
Copy pathAll Paths From Source to Target.java
52 lines (47 loc) · 1.69 KB
/
All Paths From Source to Target.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/*
Given a directed, acyclic graph of N nodes.
Find all possible paths from node 0 to node N-1, and return them in any order.
The graph is given as follows: the nodes are 0, 1, ..., graph.length - 1.
graph[i] is a list of all nodes j for which the edge (i, j) exists.
Example:
Input: [[1,2], [3], [3], []]
Output: [[0,1,3],[0,2,3]]
Explanation: The graph looks like this:
0--->1
| |
v v
2--->3
There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.
Note:
The number of nodes in the graph will be in the range [2, 15].
You can print different paths in any order, but you should keep the order of nodes inside one path.
*/
/**
* Approach: Graph DFS (Backtracking)
* 需要求出所有从 0 到 n-1 的具体路径,因此需要使用 DFS 进行遍历,并记录路径。
* 这里我们枚举了所有的方案数,找出结尾通向 n-1 的即可。
*
* 关于 Backtracking 的模板和详细解释可以参考:
* https://github.com/cherryljr/LintCode/blob/master/Subset.java
*/
class Solution {
public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
List<List<Integer>> rst = new LinkedList<>();
List<Integer> path = new LinkedList<>();
path.add(0);
dfs(graph, 0, path, rst);
return rst;
}
private void dfs(int[][] graph, int index, List<Integer> path, List<List<Integer>> rst) {
if (index == graph.length - 1) {
rst.add(new LinkedList<>(path));
return;
}
for (int neigh : graph[index]) {
path.add(neigh);
dfs(graph, neigh, path, rst);
// Backtracking
path.remove(path.size() - 1);
}
}
}