-
Notifications
You must be signed in to change notification settings - Fork 28
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
OOM?请问这个是什么错误呢? #14
Comments
Hi, |
OH, repeat: |
The settings are designed for 8 GPUs, you should adjust them when you use 2 GPUs according to the guidelines of Detectron2. |
thank you, i solve it! |
[04/14 16:15:25 d2.engine.hooks]: Total training time: 0:00:24 (0:00:00 on hooks)
[04/14 16:15:25 d2.utils.events]: iter: 0 lr: N/A max_mem: 7597M
Traceback (most recent call last):
File "./tools/train_net.py", line 234, in
args=(args,),
File "/media/ubun/BE5A462D5A45E32F/detectron2/detectron2/engine/launch.py", line 79, in launch
daemon=False,
File "/home/ubun/anaconda3/envs/detectrontwo/lib/python3.6/site-packages/torch/multiprocessing/spawn.py", line 230, in spawn
return start_processes(fn, args, nprocs, join, daemon, start_method='spawn')
File "/home/ubun/anaconda3/envs/detectrontwo/lib/python3.6/site-packages/torch/multiprocessing/spawn.py", line 188, in start_processes
while not context.join():
File "/home/ubun/anaconda3/envs/detectrontwo/lib/python3.6/site-packages/torch/multiprocessing/spawn.py", line 150, in join
raise ProcessRaisedException(msg, error_index, failed_process.pid)
torch.multiprocessing.spawn.ProcessRaisedException:
-- Process 1 terminated with the following error:
Traceback (most recent call last):
File "/home/ubun/anaconda3/envs/detectrontwo/lib/python3.6/site-packages/torch/multiprocessing/spawn.py", line 59, in _wrap
fn(i, *args)
File "/media/ubun/BE5A462D5A45E32F/detectron2/detectron2/engine/launch.py", line 125, in _distributed_worker
main_func(*args)
File "/media/ubun/BE5A462D5A45E32F/detectron2/YOLOF/tools/train_net.py", line 221, in main
return trainer.train()
File "/media/ubun/BE5A462D5A45E32F/detectron2/detectron2/engine/defaults.py", line 480, in train
super().train(self.start_iter, self.max_iter)
File "/media/ubun/BE5A462D5A45E32F/detectron2/detectron2/engine/train_loop.py", line 149, in train
self.run_step()
File "/media/ubun/BE5A462D5A45E32F/detectron2/detectron2/engine/defaults.py", line 490, in run_step
self._trainer.run_step()
File "/media/ubun/BE5A462D5A45E32F/detectron2/detectron2/engine/train_loop.py", line 273, in run_step
loss_dict = self.model(data)
File "/home/ubun/anaconda3/envs/detectrontwo/lib/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/ubun/anaconda3/envs/detectrontwo/lib/python3.6/site-packages/torch/nn/parallel/distributed.py", line 705, in forward
output = self.module(*inputs[0], **kwargs[0])
File "/home/ubun/anaconda3/envs/detectrontwo/lib/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/media/ubun/BE5A462D5A45E32F/detectron2/YOLOF/yolof/modeling/yolof.py", line 273, in forward
features = self.backbone(images.tensor)
File "/home/ubun/anaconda3/envs/detectrontwo/lib/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/media/ubun/BE5A462D5A45E32F/detectron2/detectron2/modeling/backbone/resnet.py", line 449, in forward
x = stage(x)
File "/home/ubun/anaconda3/envs/detectrontwo/lib/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/ubun/anaconda3/envs/detectrontwo/lib/python3.6/site-packages/torch/nn/modules/container.py", line 119, in forward
input = module(input)
File "/home/ubun/anaconda3/envs/detectrontwo/lib/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/media/ubun/BE5A462D5A45E32F/detectron2/detectron2/modeling/backbone/resnet.py", line 201, in forward
out = self.conv3(out)
File "/home/ubun/anaconda3/envs/detectrontwo/lib/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/media/ubun/BE5A462D5A45E32F/detectron2/detectron2/layers/wrappers.py", line 88, in forward
x = self.norm(x)
File "/home/ubun/anaconda3/envs/detectrontwo/lib/python3.6/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/media/ubun/BE5A462D5A45E32F/detectron2/detectron2/layers/batch_norm.py", line 65, in forward
eps=self.eps,
File "/home/ubun/anaconda3/envs/detectrontwo/lib/python3.6/site-packages/torch/nn/functional.py", line 2150, in batch_norm
input, weight, bias, running_mean, running_var, training, momentum, eps, torch.backends.cudnn.enabled
RuntimeError: CUDA out of memory. Tried to allocate 2.04 GiB (GPU 1; 11.78 GiB total capacity; 5.89 GiB already allocated; 751.50 MiB free; 9.00 GiB reserved in total by PyTorch)
The text was updated successfully, but these errors were encountered: