-
Notifications
You must be signed in to change notification settings - Fork 0
/
HW5.nb
1712 lines (1622 loc) · 73.7 KB
/
HW5.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 75319, 1703]
NotebookOptionsPosition[ 71582, 1601]
NotebookOutlinePosition[ 72121, 1623]
CellTagsIndexPosition[ 72034, 1618]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["SDS 384.7 Homework # 5", "Title",
CellChangeTimes->{{3.687779381494781*^9, 3.687779391897318*^9}}],
Cell["Qi Chen(qc586)", "Author",
CellChangeTimes->{{3.6877795316008177`*^9, 3.687779535322661*^9}}],
Cell[CellGroupData[{
Cell["Problem 1", "Section",
CellChangeTimes->{{3.6877795423137207`*^9, 3.68777954761304*^9}}],
Cell[TextData[{
"Launch OpenBUGS, Click on ",
StyleBox["Manuals > OpenBUGS user manual",
FontSlant->"Italic"],
" from the task bar at the top of the console to view ",
StyleBox["Model Specification, which includes an appendix of limited \
probability distributions available within the software",
FontSlant->"Italic"],
". Using that list, state how you would write each of the following sampling \
models for ",
Cell[BoxData[
FormBox["X", TraditionalForm]]],
", given parameters indicated, in an OpenBUGS code:"
}], "TextNoIndent",
CellChangeTimes->{{3.687779549916854*^9, 3.687779554963771*^9}}],
Cell[TextData[{
"(a) ",
Cell[BoxData[
FormBox[
RowBox[{"Binomial", " ",
RowBox[{"(",
RowBox[{
RowBox[{"n", "=", "10"}], ",", " ",
RowBox[{"p", " ", "=", " ", "0.2"}]}], ")"}]}], TraditionalForm]],
FormatType->"TraditionalForm"]
}], "Item",
CellChangeTimes->{{3.687779757702606*^9, 3.687779778743335*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"X", "~", "dbin"}],
RowBox[{"(",
RowBox[{"0.2", ",", "10"}], ")"}]}]], "Code",
CellChangeTimes->{{3.6878643887831697`*^9, 3.687864396608404*^9}, {
3.687864635756872*^9, 3.687864647257628*^9}}],
Cell[TextData[{
"(b) ",
Cell[BoxData[
FormBox[
RowBox[{"Poisson", " ",
RowBox[{"(",
RowBox[{"\[Lambda]", " ", "=", " ", "25"}], ")"}]}], TraditionalForm]],
FormatType->"TraditionalForm"]
}], "Item",
CellChangeTimes->{{3.687779757702606*^9, 3.68777980298742*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"X", "~", "dpois"}],
RowBox[{"(", "25", ")"}]}]], "Code",
CellChangeTimes->{{3.6878643887831697`*^9, 3.687864396608404*^9}, {
3.687864667378056*^9, 3.687864679713358*^9}}],
Cell[TextData[{
"(c) ",
Cell[BoxData[
FormBox[
RowBox[{"Poisson", " ",
RowBox[{"(", "\[Lambda]", ")"}]}], TraditionalForm]],
FormatType->"TraditionalForm"],
", where \[Lambda] is unspecified"
}], "Item",
CellChangeTimes->{{3.687779757702606*^9, 3.687779831918103*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"X", "~", "dpois"}],
RowBox[{"(", "lambda", ")"}]}]], "Code",
CellChangeTimes->{{3.6878643887831697`*^9, 3.687864396608404*^9}, {
3.6878646863323727`*^9, 3.687864705566543*^9}}],
Cell[TextData[{
"(d) ",
Cell[BoxData[
FormBox[
RowBox[{"Beta", " ",
RowBox[{"(",
RowBox[{
RowBox[{"shape1", "=", "4"}], ",",
RowBox[{"shape2", "=", "5.5"}]}], ")"}]}], TraditionalForm]],
FormatType->"TraditionalForm"]
}], "Item",
CellChangeTimes->{{3.687779757702606*^9, 3.6877798614516363`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"X", "~", "dbeta"}],
RowBox[{"(",
RowBox[{"4", ",", "5.5"}], ")"}]}]], "Code",
CellChangeTimes->{{3.6878643887831697`*^9, 3.687864396608404*^9}, {
3.687864708954585*^9, 3.6878647248843307`*^9}}],
Cell[TextData[{
"(e) ",
Cell[BoxData[
FormBox[
RowBox[{"Gamma", "(",
RowBox[{
RowBox[{"shape", "=", "3.0"}], ",",
RowBox[{"rate", "=", "2.5"}]}], ")"}], TraditionalForm]],
FormatType->"TraditionalForm"]
}], "Item",
CellChangeTimes->{{3.687779757702606*^9, 3.687779909598639*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"X", "~", "dgamma"}],
RowBox[{"(",
RowBox[{"3.0", ",", "2.5"}], ")"}]}]], "Code",
CellChangeTimes->{{3.6878643887831697`*^9, 3.687864396608404*^9}, {
3.6878647507053556`*^9, 3.6878647730958843`*^9}}],
Cell[TextData[{
"(f) ",
Cell[BoxData[
FormBox[
RowBox[{"Gamma", "(",
RowBox[{"shape", ",", "rate"}], ")"}], TraditionalForm]],
FormatType->"TraditionalForm"],
", where shape and rate are unspecified."
}], "Item",
CellChangeTimes->{{3.687779757702606*^9, 3.687779940516062*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"X", "~", "dgamma"}],
RowBox[{"(",
RowBox[{"r", ",", "mu"}], ")"}]}]], "Code",
CellChangeTimes->{{3.6878643887831697`*^9, 3.687864396608404*^9}, {
3.6878647827945623`*^9, 3.68786479716374*^9}}],
Cell[TextData[{
"(g) ",
Cell[BoxData[
FormBox[
RowBox[{"Normal", "(",
RowBox[{
RowBox[{"mean", "=", " ",
RowBox[{"-", "5.0"}]}], ",", " ",
RowBox[{"sd", " ", "=", " ", "2"}]}], ")"}], TraditionalForm]],
FormatType->"TraditionalForm"]
}], "Item",
CellChangeTimes->{{3.687779962377365*^9, 3.687780028507711*^9}}],
Cell[TextData[{
"Notice that ",
Cell[BoxData[
FormBox[
RowBox[{"\[Tau]", "=",
RowBox[{
FractionBox["1", "var"], "=",
RowBox[{
FractionBox["1",
SuperscriptBox["\[Sigma]", "2"]], "=",
FractionBox["1", "4"]}]}]}], TraditionalForm]],
FormatType->"TraditionalForm"]
}], "TextNoIndent",
CellChangeTimes->{{3.6878648917659693`*^9, 3.6878649137939997`*^9}, {
3.687864966116089*^9, 3.687864967800342*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"X", "~", "dnorm"}],
RowBox[{"(",
RowBox[{
RowBox[{"-", "5.0"}], ",",
RowBox[{"1", "/", "4"}]}], ")"}]}]], "Code",
CellChangeTimes->{{3.6878643887831697`*^9, 3.687864396608404*^9}, {
3.687864828502873*^9, 3.6878648453872433`*^9}, {3.687864881930026*^9,
3.687864883137486*^9}}],
Cell["(h) Normal(\[Mu], var = 1/\[Tau]), where \[Mu] and \[Tau] are \
unspecified.", "Item",
CellChangeTimes->{{3.687779757702606*^9, 3.687779940516062*^9},
3.687779979424322*^9, {3.687780839242165*^9, 3.6877808579042892`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"X", "~", "dnorm"}],
RowBox[{"(",
RowBox[{"mu", ",", "tau"}], ")"}]}]], "Code",
CellChangeTimes->{{3.6878643887831697`*^9, 3.687864396608404*^9}, {
3.687865036763722*^9, 3.6878650472759438`*^9}}],
Cell[TextData[{
"(i) Weibull(shape=5.0, scale=5.2), where shape and scale respectively refer \
to ",
Cell[BoxData[
FormBox["v", TraditionalForm]],
FormatType->"TraditionalForm"],
" and \[Lambda] in documentation for Weibull in OpenBUGS."
}], "Item",
CellChangeTimes->{{3.687779757702606*^9, 3.687779940516062*^9}, {
3.687779979424322*^9, 3.687779995462117*^9}, {3.6877808724871597`*^9,
3.687780885124942*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"X", "~", "dweib"}],
RowBox[{"(",
RowBox[{"5.0", ",", "5.2"}], ")"}]}]], "Code",
CellChangeTimes->{{3.6878643887831697`*^9, 3.687864396608404*^9}, {
3.6878650714389973`*^9, 3.687865098700693*^9}}],
Cell["(j) Weibull(shape=5.0, 3*\[Lambda]), where \[Lambda] is unspecified.", \
"Item",
CellChangeTimes->{
3.6877800105687847`*^9, {3.687780890993651*^9, 3.687780902152789*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"x", "~", "dweib"}],
RowBox[{"(",
RowBox[{"5.0", ",",
RowBox[{"3", "*", "lambda"}]}], ")"}]}]], "Code",
CellChangeTimes->{{3.6878643887831697`*^9, 3.687864396608404*^9}, {
3.687865208283584*^9, 3.687865224972447*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["Problem 2", "Section",
CellChangeTimes->{{3.6877795423137207`*^9, 3.68777954761304*^9}, {
3.687780043547337*^9, 3.687780043681363*^9}}],
Cell["\<\
Revisit question #1 in your homework assignment #4, and read example 5.3.1 \
and exercise 5.31 on pages 130-131of CJBH\[CloseCurlyQuote]s Text carefully, \
and answer the following in the context of inferences relating to the kill \
rate, \[Theta], the average number of armadillos killed per day by men of the \
Ache tribe. You must use the Bayesian model and data as described on page \
130, adapt the code as given on page 131, and run it on OpenBUGS.\
\>", "TextNoIndent",
CellChangeTimes->{
3.687780050691494*^9, {3.687780917689361*^9, 3.687780929287487*^9}}],
Cell["(a) State the Bayesian Model.", "Item",
CellChangeTimes->{{3.687780961571314*^9, 3.687780973186223*^9}}],
Cell["\<\
Solution: According to HW4, the prior distribution is given by\
\>", "TextNoIndent",
CellChangeTimes->{{3.6878660799971743`*^9, 3.687866098836232*^9},
3.688085773839203*^9, {3.688085911317813*^9, 3.688085921076049*^9}}],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
SubscriptBox["p", "1"], "(", "\[Theta]", ")"}], "=",
RowBox[{
RowBox[{"[",
FractionBox[
SuperscriptBox["1.61", "1.11"],
RowBox[{"\[CapitalGamma]", "(", "1.11", ")"}]], "]"}],
SuperscriptBox["\[Theta]",
RowBox[{"1.11", "-", "1"}]],
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "1.61"}], "\[Theta]"}]],
RowBox[{
SubscriptBox["I",
RowBox[{"(",
RowBox[{"0", ",", "\[Infinity]"}], ")"}]], "(", "\[Theta]", ")"}]}]}],
TraditionalForm]], "DisplayFormulaNumbered",
CellChangeTimes->{3.6880859285590467`*^9}],
Cell["the likelihood function is given by", "TextNoIndent",
CellChangeTimes->{{3.688085930975268*^9, 3.688085939542563*^9}}],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
SubscriptBox["p", "2"], "(",
RowBox[{"y", "|", "\[Theta]"}], ")"}], "=",
RowBox[{
SuperscriptBox["\[Theta]", "y"],
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-", "\[Theta]"}]],
RowBox[{"y", "!"}]],
RowBox[{
SubscriptBox["I",
RowBox[{"{",
RowBox[{"0", ",", "1", ",", "2", ",", "\[Ellipsis]"}], "}"}]], "(",
"y", ")"}]}]}], TraditionalForm]], "DisplayFormulaNumbered",
CellChangeTimes->{3.688085945510858*^9}],
Cell["the posterior distribution for \[Theta] is given by", "TextNoIndent",
CellChangeTimes->{3.6880857765309343`*^9}],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
SubscriptBox["p", "4"], "(",
RowBox[{"\[Theta]", "|", "y"}], ")"}], "=",
RowBox[{
RowBox[{"[",
FractionBox[
RowBox[{"b", ".",
SuperscriptBox["post",
RowBox[{"a", ".", "post"}]]}],
RowBox[{"\[CapitalGamma]", "(",
RowBox[{"a", ".", "post"}], ")"}]], "]"}],
SuperscriptBox["\[Theta]",
RowBox[{
RowBox[{"a", ".", "post"}], "-", "1"}]],
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-",
RowBox[{"b", ".", "post"}]}], " ", "\[Theta]"}]],
RowBox[{
SubscriptBox["I",
RowBox[{"(",
RowBox[{"0", ",", "\[Infinity]"}], ")"}]], "(", "\[Theta]", ")"}]}]}],
TraditionalForm]], "DisplayFormulaNumbered",
CellChangeTimes->{3.687866111060602*^9}],
Cell["where", "TextNoIndent",
CellChangeTimes->{{3.687866113936976*^9, 3.6878661143750668`*^9}}],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
RowBox[{"a", ".", "post"}], "=",
RowBox[{
RowBox[{
RowBox[{"a", ".", "prior"}], "+",
RowBox[{"n", " ",
OverscriptBox["y", "\[HorizontalLine]"]}]}], "=",
RowBox[{
RowBox[{"10", "+", "1.11"}], "=", "11.11"}]}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"b", ".", "post"}], "=",
RowBox[{
RowBox[{
RowBox[{"b", ".", "prior"}], "+", "n"}], "=",
RowBox[{
RowBox[{"1.61", "+", "38"}], "=",
RowBox[{"39.61", "."}]}]}]}]}],
TraditionalForm]], "DisplayFormulaNumbered",
CellChangeTimes->{{3.687866127268134*^9, 3.6878661358912582`*^9}, {
3.687866282349366*^9, 3.687866320719449*^9}}],
Cell["\<\
(b) Run a single Markov Chain in OpenBUGS to find approximate answers for \
some of the following inferential questions. Set the number of burn-in \
parameter updates at 500, and set the number of total number of parameter \
updates at 5500. Note: you can set the initial value of \[Theta] to start the \
chain in any reasonable way you can.\
\>", "Item",
CellChangeTimes->{{3.687780961571314*^9, 3.687781005680552*^9}}],
Cell["\<\
\t\tmean\tsd\tMC_error\tval2.5pc\tmedian\tval97.5pc\tstart\tsample
\tpost.prob.theta1\t0.4028\t0.4905\t0.006933\t0.0\t0.0\t1.0\t501\t5000
\tpost.prob.theta2\t0.8054\t0.3959\t0.005747\t0.0\t1.0\t1.0\t501\t5000
\tpost.prob.theta3\t0.4026\t0.4904\t0.007798\t0.0\t0.0\t1.0\t501\t5000
\tpost.tau1\t-1.324\t0.3105\t0.003885\t-1.969\t-1.307\t-0.7631\t501\t5000
\tpred.prob.y39\t0.753\t0.4313\t0.006325\t0.0\t1.0\t1.0\t501\t5000
\ttau2\t0.7593\t0.06263\t8.11E-4\t 0.6276\t0.7631\t0.8705\t501\t5000
\ttheta\t0.2788\t0.08435\t0.001106\t0.1396\t0.2705\t0.4662\t501\t5000
\ty39\t0.2816\t0.5287\t0.007496\t0.0\t0.0\t2.0\t501\t5000
\
\>", "TextNoIndent",
CellChangeTimes->{
3.688086528372534*^9, {3.6883017251017313`*^9, 3.688301743269075*^9}}],
Cell["i. Find the central 95% posterior credible interval for \[Theta].", \
"Subitem",
CellChangeTimes->{{3.687781022915432*^9, 3.6877810295952578`*^9}}],
Cell[TextData[{
"Solution: The 95% CI for \[Theta] is ",
Cell[BoxData[
FormBox[
RowBox[{"[",
RowBox[{"0.1396", ",", "0.4662"}], "]"}], TraditionalForm]]],
"."
}], "TextNoIndent",
CellChangeTimes->{{3.688086009989251*^9, 3.688086012265964*^9}, {
3.6880866501555157`*^9, 3.68808669344276*^9}, {3.688301783552582*^9,
3.6883017875605183`*^9}}],
Cell[TextData[{
"ii. Find ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"P", "(",
RowBox[{
RowBox[{"\[Theta]", "\[LessEqual]", "0.25"}], "|",
SubsuperscriptBox["y", "38", "*"]}], ")"}], ",",
RowBox[{"P", "(",
RowBox[{
RowBox[{"\[Theta]", "\[LessEqual]", "0.35"}], "|",
SubsuperscriptBox["y", "38", "*"]}], ")"}]}], TraditionalForm]]],
" and ",
Cell[BoxData[
FormBox[
RowBox[{"P", "(",
RowBox[{
RowBox[{"0.25", "<", "\[Theta]", "\[LessEqual]", "0.35"}], "|",
SubsuperscriptBox["y", "38", "*"]}], ")"}], TraditionalForm]]],
"."
}], "Subitem",
CellChangeTimes->{{3.687781022915432*^9, 3.68778105329657*^9}, {
3.687781288439443*^9, 3.68778135722293*^9}}],
Cell["Solution: ", "TextNoIndent",
CellChangeTimes->{{3.688086009989251*^9, 3.688086012265964*^9}}],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"P", "(",
RowBox[{
RowBox[{"\[Theta]", "\[LessEqual]", "0.25"}], "|",
SubsuperscriptBox["y", "38", "*"]}], ")"}], "=", "0.4028"}],
TraditionalForm]], "DisplayFormulaNumbered",
CellChangeTimes->{{3.688086703784197*^9, 3.688086721916707*^9}, {
3.688301820282915*^9, 3.6883018215872383`*^9}}],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"P", "(",
RowBox[{
RowBox[{"\[Theta]", "\[LessEqual]", "0.35"}], "|",
SubsuperscriptBox["y", "38", "*"]}], ")"}], "=", "0.8054"}],
TraditionalForm]], "DisplayFormulaNumbered",
CellChangeTimes->{{3.688086730395378*^9, 3.68808673965464*^9}, {
3.688301825769063*^9, 3.68830182745192*^9}},
CellTags->"eq: 2015406779917919956"],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"P", "(",
RowBox[{
RowBox[{"0.25", "<", "\[Theta]", "\[LessEqual]", "0.35"}], "|",
SubsuperscriptBox["y", "38", "*"]}], ")"}], "=", "0.4026"}],
TraditionalForm]], "DisplayFormulaNumbered",
CellChangeTimes->{{3.688086749531348*^9, 3.688086757645718*^9}, {
3.688301836028048*^9, 3.6883018374605703`*^9}}],
Cell[TextData[{
"iii. Let ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["\[Tau]", "1"], "=",
RowBox[{"log", "(", "\[Theta]", ")"}]}], TraditionalForm]]],
". Find the central 95% posterior credible interval for ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Tau]", "1"], TraditionalForm]]],
"."
}], "Subitem",
CellChangeTimes->{{3.687781022915432*^9, 3.68778105329657*^9}, {
3.687781288439443*^9, 3.687781405341028*^9}}],
Cell[TextData[{
"Solution: The 95% CI for ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Tau]", "1"], TraditionalForm]]],
" is ",
Cell[BoxData[
FormBox[
RowBox[{"[",
RowBox[{
RowBox[{"-", "1.969"}], ",",
RowBox[{"-", "0.7631"}]}], "]"}], TraditionalForm]]],
"."
}], "TextNoIndent",
CellChangeTimes->{{3.688086009989251*^9, 3.688086012265964*^9}, {
3.688087021002735*^9, 3.688087044698002*^9}, {3.688301944005217*^9,
3.688301947704238*^9}}],
Cell[TextData[{
"iv. Test the hypotheses ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["H", "0"], ":",
RowBox[{"\[Theta]", "\[LessEqual]", "0.35"}]}], TraditionalForm]],
FormatType->"TraditionalForm"],
" versus ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["H", "1"], ":",
RowBox[{"\[Theta]", ">", "0.35"}]}], TraditionalForm]],
FormatType->"TraditionalForm"]
}], "Subitem",
CellChangeTimes->{{3.687781022915432*^9, 3.68778105329657*^9}, {
3.687781288439443*^9, 3.6877814561056137`*^9}}],
Cell[TextData[{
"Solution: From ",
"Eq. (",
CounterBox["DisplayFormulaNumbered", "eq: 2015406779917919956"],
"), we know"
}], "TextNoIndent",
CellChangeTimes->{{3.688086009989251*^9, 3.688086012265964*^9}, {
3.688087060249702*^9, 3.688087073778976*^9}}],
Cell[BoxData[{
FormBox[
RowBox[{
RowBox[{"P", "(",
RowBox[{
RowBox[{"\[Theta]", "\[LessEqual]", "0.35"}], "|",
SubsuperscriptBox["y", "38", "*"]}], ")"}], "=", "0.8054"}],
TraditionalForm], "\[IndentingNewLine]",
FormBox[
RowBox[{
RowBox[{"P", "(",
RowBox[{
RowBox[{"\[Theta]", ">", "0.35"}], "|",
SubsuperscriptBox["y", "38", "*"]}], ")"}], "=", "0.1946"}],
TraditionalForm]}], "DisplayFormulaNumbered",
CellChangeTimes->{{3.688087082491415*^9, 3.68808711193961*^9}, {
3.688301968120883*^9, 3.6883019795556498`*^9}}],
Cell["\<\
which means the Bayesian test concludes that there is 80.58% probability the \
null hypothesis is true.\
\>", "TextNoIndent",
CellChangeTimes->{{3.688087116523151*^9, 3.688087118659548*^9}, {
3.688087247851975*^9, 3.6880872977012*^9}}],
Cell[TextData[{
"v. State the meaning of the notation ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["\[Tau]", "2"], " ", "=",
RowBox[{
RowBox[{"P", "(",
RowBox[{
SubscriptBox["Y", "39"], "=",
RowBox[{"0", "|", "\[Theta]"}]}], ")"}], "."}]}], TraditionalForm]]]
}], "Subitem",
CellChangeTimes->{{3.687781022915432*^9, 3.68778105329657*^9}, {
3.687781288439443*^9, 3.6877814561056137`*^9}, {3.6877814917140703`*^9,
3.6877815345585737`*^9}}],
Cell[TextData[{
"Solution: ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Tau]", "2"], TraditionalForm]],
FormatType->"TraditionalForm"],
" represents the predicted probability of no kills given \[Theta] fixed."
}], "TextNoIndent",
CellChangeTimes->{{3.688058127131188*^9, 3.6880581381845293`*^9}, {
3.688058229851837*^9, 3.6880582800959253`*^9}, {3.688061762905923*^9,
3.6880617725039263`*^9}}],
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["\[Tau]", "2"], "=",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-", "\[Theta]"}]]}], TraditionalForm]], "DisplayFormulaNumbered",\
CellChangeTimes->{{3.688061794506103*^9, 3.6880618102166157`*^9}}],
Cell[TextData[{
"which can be seen as a statistic of random variable ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"\[Theta]", "~", "posterior"}],
RowBox[{"(",
RowBox[{"\[Theta]", "|",
SubsuperscriptBox["y", "38", "*"]}], ")"}]}], TraditionalForm]],
FormatType->"TraditionalForm"],
"."
}], "TextNoIndent",
CellChangeTimes->{{3.688069462477174*^9, 3.688069501466015*^9}}],
Cell[TextData[{
"vi. Find the central 95% posterior credible interval for ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Tau]", "2"], TraditionalForm]],
FormatType->"TraditionalForm"],
"."
}], "Subitem",
CellChangeTimes->{{3.687781022915432*^9, 3.68778105329657*^9}, {
3.687781288439443*^9, 3.6877814561056137`*^9}, {3.687781550537156*^9,
3.687781556999815*^9}}],
Cell[TextData[{
"Solution: The 95% CI for ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Tau]", "2"], TraditionalForm]]],
" is ",
Cell[BoxData[
FormBox[
RowBox[{"[",
RowBox[{"0.6276", ",", "0.8705"}], "]"}], TraditionalForm]]],
"."
}], "TextNoIndent",
CellChangeTimes->{{3.688086009989251*^9, 3.688086012265964*^9}, {
3.6880873371532288`*^9, 3.688087363817204*^9}, {3.688302009958475*^9,
3.6883020212298603`*^9}}],
Cell[TextData[{
"vii. State the meaning of the notation ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["\[Tau]", "3"], "=",
RowBox[{
RowBox[{"P", "(",
RowBox[{
SubscriptBox["Y", "39"], "=",
RowBox[{"0", "|",
SubsuperscriptBox["y", "38", "*"]}]}], ")"}], "."}]}],
TraditionalForm]]]
}], "Subitem",
CellChangeTimes->{{3.687781022915432*^9, 3.68778105329657*^9}, {
3.687781288439443*^9, 3.6877814561056137`*^9}, {3.687781566285637*^9,
3.6877816437266808`*^9}}],
Cell[TextData[{
"Solution: ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Tau]", "3"], TraditionalForm]]],
" represents the predicted probability of no kills given the known data ",
Cell[BoxData[
FormBox[
SubsuperscriptBox["y", "38", "*"], TraditionalForm]]],
", which has the final precision."
}], "TextNoIndent",
CellChangeTimes->{{3.688058127131188*^9, 3.6880581381845293`*^9}, {
3.688058229851837*^9, 3.688058250703403*^9}, {3.688058286603133*^9,
3.6880583321660967`*^9}, {3.688061781125746*^9, 3.688061782906951*^9}, {
3.68808598195468*^9, 3.688086003732233*^9}}],
Cell[TextData[{
"viii. Find ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Tau]", "3"], TraditionalForm]],
FormatType->"TraditionalForm"],
"."
}], "Subitem",
CellChangeTimes->{{3.687781022915432*^9, 3.68778105329657*^9}, {
3.687781288439443*^9, 3.6877814561056137`*^9}, {3.687781566285637*^9,
3.687781602524748*^9}, {3.687781649146896*^9, 3.687781652186995*^9}}],
Cell[TextData[{
"Solution: ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["\[Tau]", "3"], "=", "0.753"}], TraditionalForm]],
"DisplayFormulaNumbered",
CellChangeTimes->{{3.688087414831409*^9, 3.688087422657827*^9}}]
}], "TextNoIndent",
CellChangeTimes->{{3.688086009989251*^9, 3.688086012265964*^9},
3.6880874290014153`*^9, {3.6883020680324373`*^9, 3.688302069353238*^9}}],
Cell[TextData[{
"ix. Find the central 95% posterior predictive interval for ",
Cell[BoxData[
FormBox[
SubscriptBox["Y", "39"], TraditionalForm]],
FormatType->"TraditionalForm"],
"."
}], "Subitem",
CellChangeTimes->{{3.687781022915432*^9, 3.68778105329657*^9}, {
3.687781288439443*^9, 3.6877814561056137`*^9}, {3.687781566285637*^9,
3.687781602524748*^9}, {3.687781649146896*^9, 3.687781689999957*^9}}],
Cell[TextData[{
"Solution: The 95% PI for ",
Cell[BoxData[
FormBox[
SubscriptBox["Y", "39"], TraditionalForm]],
FormatType->"TraditionalForm"],
" ",
Cell[BoxData[
FormBox[
RowBox[{"[",
RowBox[{"0.0", ",", "2.0"}], "]"}], TraditionalForm]],
FormatType->"TraditionalForm"]
}], "TextNoIndent",
CellChangeTimes->{{3.688086009989251*^9, 3.688086012265964*^9}, {
3.68808749183858*^9, 3.688087521376337*^9}}],
Cell[TextData[{
"x. The histories of the monitored values, after burn-in, only for \[Theta] \
and ",
Cell[BoxData[
FormBox[
SubscriptBox["Y", "39"], TraditionalForm]],
FormatType->"TraditionalForm"],
"."
}], "Subitem",
CellChangeTimes->{{3.687781022915432*^9, 3.68778105329657*^9}, {
3.687781288439443*^9, 3.6877814561056137`*^9}, {3.687781566285637*^9,
3.687781602524748*^9}, {3.687781649146896*^9, 3.687781689999957*^9}, {
3.687781790711492*^9, 3.6877818028727617`*^9}}],
Cell["Solution: The graphs are as follows", "TextNoIndent",
CellChangeTimes->{{3.688086009989251*^9, 3.688086012265964*^9}, {
3.688087536227828*^9, 3.6880875467604523`*^9}, {3.688087942351462*^9,
3.688087943954155*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztnW0O5Dqxho+4/GAb98/dBywBVgAS/EUCJMSCWOX54M4AfQg59fGW7SSV
5HkkT3c7drlcLjvvdPf0/O/v/vjrP/zsm2+++fMvvvzx69/+9Zd/+tNv//ab
n3958au//eX3v/ufL0/+/qX835c2Xyv/AQAAAHAAP/zww0/K999//2P57rvv
fizffvvtPwsAAADAEaBLAAAAoAvoEgAAAOgCugQAAAC6gC4BAACALtxVl3z9
Z0EUCoVCoVDeUe6gSwAAAOBZWO+XoEsAAADgCtAlAAAA0AV0CQAAAHQBXQIA
AABdQJcAAABAF9AlAAAA0AV0CQAAAHQBXQIAAABdQJcAAABAF9AlAAAA0AV0
CQAAAHQBXQIAAABdQJcAAABAF9AlAAAA0AV0CQAAAHQBXQIAAABdQJcAAABA
F9AlAAAA0AV0CQAAAHQBXQIAAABdQJcAAABAF9AlAAAA0IXuuuSrL5YGQZcA
AAA8j2665KND9npkr0PQJQAAAM+joy7JnluvAQAA4P501CW8XwIAAPBOuumS
PXy/BAAA4D101yUe6BIAAIDncRddwuc4AAAAz+cuumSP9z0UAAAAuC9ddUmm
OdAiAAAAz6ObLrG0iFcHAAAAz6KjLlHq0SUAAADPo6Mu4f0SAACAd9JNl3zg
+yUAAADvo6suyUCXAAAAPA90CQAAAHQBXQIAAABdQJcAAABAF9AlAAAA0AV0
CQAAAHQBXQIAMABnEMAhdNcl/H4JAPxIp33fyReAB9FNl1j/TzC/9woA/6TT
vu/kC8CD6KhLto/7eu81ALyATvu+ky8AD6KzLuH9EgD4Lzrt+06+ADyIbrrk
K9ZnOVYbAHgZnfZ9J1/gWsiFpXTUJQroEoAD6bq/OvnVyRc4BnWNyYWl3EWX
8DkOwIl03V9n+MW9CD6QC5dwtC7ZfyazSk8cYRMA/k3XPYUugTMhFy7hDF1i
PSr9Wny/hHyDN7LN+057AF0CZ0IuXEI3XeL925vLPsch3+4Pa1hH0SVXxBVd
4tPNnydw11y4OWd+v0TREur7I6fqEnLu3qxevzfkQzdd8hkLXeLTzZ8noMSU
e8Ryun3vteX7JXc9p+BfoEvqoEvWtTuLbv48AXTJJRylS6zvu1a+o9rq+yWr
zily9xq665KOeYEuWdduNR3W4y2gSy7hrO+XrAZdAjKr4n7UvbFjXhypS0b6
3VmXrPZ95Xp0zL2VzM4PXXIJZ32Os1pHHKpL9mfyqtys+tzpDO7AmffByM6T
dIlyjztal6j7a2bMCk/XJcraXslKn47SJSP3CJA58/dLPq9X0EaXbM+cq3XJ
0/++hC5Zz1t0SaUfumTM7irQJa+n278Trto9hDvrkidrmdH4rrwfHHEGXXkO
r9IlM/f9ylhX6ZKoTs1LdInGFfuhGlPrHqHcJzrQyRcHdIlp/L+fj+qS6t8L
vfaVvXXG3+GeoEtG532GLpmx/wZdcnTO3kGXzOR0FO9Ve2WGbroki0l0Lqxe
+xXM+nLCXM74fskRvxePLnH6K2Ns26FL7GteH3RJrY3Xz+uLLsmp6pKKDny6
LlHya1+PLlnbX6Db75eooEuc/jO6pHrOKv6M9h0Zt3IuX6lLZvMkajOaY1G7
I3VJpFGssbz2yr2j4l/FvpJLK/VsB12y6oxY3TezpeqSTAdbOYwuWUb3/7fv
kt8vic5Nq63XDl0y3nfE3owuibSocv5UuKsuqdzfovHRJfm4ir2ov6o9jtQl
0Z6KbB2lSyr64QpdsqrN0TYeokuq7ZXfY2uvSxSd4tmybCt9rtAlqm9K+4yj
dYly76ucrx4rdcmqHIvaddUlXh6P+lfdE0/RJVnb0TNCHUfJydFzw/JBWcvs
/LfysJojyrmk9FHbKn0Ujrz3/puzvl8y2v6275d49z6vv3VdPfeiMa323nmu
3uuOPF/UWHvjK+dQVuedOd49Rj2rIz+teSo2qn3V9tW8UHyx4qfer5S1UfpH
RPek6j1n2ya6b1n2Rm2N7EtlPUZyXbWj+Gf5qaKcB/txrHGt9opvSv5YNj0f
1LPYGzOqV5ntL3DG79Bbr5X+20fv+iFE+zRrF+VS5SzJ+llt1LPPO9+ivan4
rJ4vqm3L9+0crDrvHMrOp2jtvOLNLUONuzd/dQ6ZDcsXxb/IH8VutL+y59l6
qPGI9mKUZ958PLyc8dpm1z1bahyta9l6jOS6akfxz/LT6xv5Ga1DdJ5Ea5+1
zfLHs2n54vXJ+nvjVs8Ob8wD6Py918v+f5xon1rtsvNWzc1KTnt+Vs7I7MxR
94I3/qxty//tWMr40dpE+9I7c7JxFNS4e/NX55CNq9aNnome3Wh/KflT2XeV
PPPG8GIwsueU8au2ttes18o1pa3VPppLZsfrn62719aqV9fLWuesvdLWi6vl
e7TvRvegRTRXy6bXPxpjkq7/b59i/zCifWq1U85H6zF67rXP/Mz2v+dv5Key
F5Sx9+0z29Z8rXlbdiPforbe82ye2ZkQ5dSKuHtx8Xyo1I2eiZ5dJRbe82w9
lOfWXKIxvBhU1r0yvoeSg9ZrZV8o+0SZSzamZ9eLQ7Rnrb6Zn1m+Z3PN5uP5
p/ge5dzoHrSI5mrZ9Pp781pAt++9qnYu0yWj+3vf3rO398Oqj/zMciw726JH
Lx4j51W0z5T9pOytKCZenfc8m2d2Jig5VT0vlHl5Pih1WT54Yyt2s7hb87Vs
VNfRsh3NxZtfVBfNOdtbFtHcPV+yuWclshnlbzamZ9earzd3r603Py9GkS8j
c438i/aD6su+bj//LBctnyz/MxvRmIvo/DlOxBHvwWyMa+dZZX/v23tj7f2w
6iM/oz2vnEHWuFnuqzYr/u1jsPcni62yNuraVa5bfnux8OYdzcmLexRjywel
LssHJU6e3cjGtn1kW12bzHY2hhUTL05Rmyim3lpkPma+eHOfzf1sHG9Mz9f9
fKP18dp68/NiFPkS2YjmY/kSxUPNJy9vstzbPqrjWDasOVnzWkRXXZJpjlPe
L4n2oNdO3d9ZvfXo+anamvH3yBhYtrZ1++eZ/cp8R2MR+aLGKbumxiqLsRdb
y89oXDX+2VhePo3klpqrXl6N5EEUp8rabh+ztYhsRb6MxlVpl83Pm5uaX9U5
KzFX4pbNPfNx70u2Bp4NJW+imFo5poy999Pq671eRDdd4v1WySWf40R5qbSb
2dPW43bcbf/M1gq/svyfnatl27pu2Rr1ayYWatyjXMmuVfpU2m+J6qJ8rORM
NM+RuFdtrM6PKE6Vtd0+ZmuR2VodV6XtSByVuClz9uJdidNoXmQ+7n2x1rbq
m5U3lRh68VFibPX1Xlt9BuioS5T62+uS6r7d+6f6OTv+6n1cabOfu7qHV61N
Zse7vq2PcmVlHim+7MdV/FTyTblWmeeKmOznttK+FSvrdbYm20drLaI5rIzV
lXZH1mYkT6M+q+ecrd3oON4co9f7HFN92bZV+3p9BuioS17xfkl13+7HVP2c
HX/lfpoZdxsHNWar10K9rq7TyjxSfNmPu/fziPVdnYNnrOuq3FDH8dZidt9c
HSPF7sje9XK66vfI2CviN7vPRmNm5ZTXV2kbvZ6kmy750O77JdmaHZ3P+zFV
P1fup9VzOsrGqjlkdmbXYGWsq/HZt5/J6dVzPGpvrbSv5MZMzh55xly5BtY8
V/o2G/Mz4je7z2b6q3NW2kavJ+mqSzIu1yWr8le1vfftSB/OmlP3kvk9mysr
4zJra6b/6vW9Q76syI2s/R3icMXarorLVfEdHffTb7a/4otyL8zOtgnQJabx
6/I5sn3kuEeWN/t9l7nP+HmXOXaJl2rviXHtNKdOvpzhdzXHsnGyvhOgS0zj
PXPuat8oa9fzKeUNc2TOz4tbJ186+p2Nk92rJkCXmMZ7ls6+Ud5byEsK5Xkl
29fR9UnQJabxnqWzbxQKhUJ5Tpm530yCLjGNUygUCoXy3jJzL5wEXWIap1Ao
FAqFMlImQZeYxikUCoVCoYyUSe6iS1r93iuFQqFQKBS7TNJNl2x/53WrPdAl
FAqF8qDCWfvcMklHXWK9RpdQKBTKgwpn7XPLJN11yacOXUKhUF5ZnnomPXVe
lOlbcDdd8hVPm2RtFjpAoVAoPcpTz6RV83pqfO5cJumoSxTQJQ3yTrlOPCmU
udJ1L836s2o+np1u8brzWo2MN8FddMll75fsX1+VHyv9WjGnzMbn+rad9/xJ
JZrXU+e8IjbdyhG+zu79o+K36kzyrnntjj4LZ+N1p3ztNpdJ7qJL9nj/bmeR
8bH19Ppu6zN73vUZv47I0X2s1Llb9TO+zl732o/GyMqhlXG/ulydd7N2V+Xd
yHxmcuqI+M3YjfJ8b3N0P6j9ZtutXq+Va7PKlzPnsoCuuiTTHIe/X7J/HNlH
WxuWPW89R/N0pm81h714WXO35qf6kM0pitnIfozGrcRlxpdsTmeU2Tlk+eLZ
HLFf6VNZg9Vt1Jz36pW9MzJeJd/UPoofs/FY1W40fkeWqu+V9TjD90m66RLv
396c/jnO/rG6j/a2LHuV3NrXW+2iviPzyPyJ5uXFL4uDF//IfhQLb97K+FHM
o3llttV9reTZUUWZQ8WPLVWb2TiVNVbXRplbtU02RuZbNcfUuGX5NuKD4ocy
preGqv19Oyvm2/pK/KrFm4s17j7OUd+s3RFzUdZtgo66RKm/XJfsn2/7ermV
5Ydlw8tfz1evzrMb7ZF9P3U/q/ut4kNk37KVzSXz1xtTmVc2N3VfR9er19Sx
s5haMYziv19DpW3Fvhd7ZaxoDCVeFfvKGJlv+7lZ7ffjjcQwauPF1xt3ZC0q
eei1sfLOamvNq7K+lRLZ8+KV+We1W+13FK9o3SboqEtu8X7J/vm2b7R3tm2i
/eaNF9mM6qw2Xj57fSv7uVKv+Ju19+LotYvsrYzvyNmQ2dj7oMYp8ymLVVSf
5Ybnn7LHoj7WOEo8FF+V+O/99exnfb0cjHLTGturi3zY13nxifyPfPHsV3yt
rEHku9Ve9a+yh6O9ltmNfM6eZ/NT9kA2B29cJe4i3XTJh/bfL9k/3/bN8sc7
Jy0baq5meWrVZ2eTdU3dz5FPURwUf705K2dcZXzPRsXfzC/lrFVsRHazOGVt
lXo19ta8LJue/cgnb0xvrOr6RftKibH3PPPdevT6e3Yq15X5es+jmEZnQDaG
ulesa94csnMh8t/yKyuRL4rfq+an9N/bUfZLxW5CV12Scagu+c8g8XPlPpGd
y16fbN+qflfbZXOL7FfPssxeNv7Ift73V+OrrL+y1ta1aBzvjIxs7OsrZ9ho
LCL/vLrqPTWKh7L+1XVX4r9t5/Xz/LFeR7nqXV99f1Dm642z8r66f53FdNV9
u7Ju1lkd3csVuwoz86uMWcnjit0EdMmUE1qd1Ua532zbHsGZukQdX2lfvS9F
447Ed6R9RVPsr1fPy73tK3VJ1r9yPbtHq+OeoUsUP6zXVV1SqatSybfquKO6
pNK+Ov5on9nz6CjQJadza12yb6fcm45g9Hy5SpccYesMXRL1OUOXVPyr6pIz
GdUjVv9KfK7UJYoPT9QlVvurzpZOY1WoajXVzgmgSxow+vfHI8c94tqRzIx7
hi4ZsaXe71bcl7qe+da43XWJaq9yrTr3q3TJrO2o/R1y9ImgS2RepUueNi78
h6s06cw4T8ible8lnalLVowxa+MOugRuDbqkAeiS99JlDd6mSyp0+EzgbTGH
V4MuAQDue01AlwC01SWX/n4JwNtgP/WG9YEX0U2XtPi9VwCATnDewYvoqEuU
enQJALwGzjt4ER11Ce+XAAAAvJNuuuQD3y8BAAB4H111SQa6BAAA4HncRZfw
OQ4AAMDzuYsu2bP9nAeNAgAA8Ay66hK+XwIAAPA+uukS/j0OAADAe+moS5R6
dAkAAMDz6KhLeL8EAADgnXTTJR/4fgkAAMD76KpLMtAlAAAAzwNdAgAAAF1A
lwAAAEAX0CUAAADQBXQJAAAAdOHOuoRCoVAoFMo7SnddciRf5w+gQK7AGyDP
4Uys90s+mgRdAhBDrsAbIM/hTNAlP4U9CCrkCrwB8hzOBF3yU9iDoEKuwBsg
z+FM0CUAAADQBXQJAAAAdAFdAgAAAF1AlwAAAEAX0CUAAADQhbfqkv3vyFnX
vD7wfFbmB3kD3SHPoRNv1iVZvfIcnkk1D8gbuDN7TUGew5WgS/x69h18+Kw5
5zU8jdW5TZ7DLG/WJfv36avvWcI7GM0P8ga6Y+kJ8hyu5q26ZIv3PYLtNase
nk/290DyBu6K9X0Sq/5TR57DWaBL/sXoe5nwXLLzlve34c7s3zP23jsmz+Fs
3qpL2HcQser7R+QN3AW+XwJdeLMu8T6/qdbDs4j+Hrm/7vVT6gE6MZvP5Dms
4q26BAAAAPqBLgEAAIAuoEsAAACgC+gSAAAA6AK6BAAAALqALgEAAIAuoEsA
AACgC+gSAAAA6AK6BAAAALqALgEAAIAuoEsA4Cyi/7N21uZquwBwDegSADib
o3QJANwfdAkAnIX1fyGq/z9i1vfzWrWJngHoCboEAM7C+hxHeV7tM2IfAHqA
LgGAs8je17De+9j3t94D2V/PxvXsA8D1oEsA4CwsXZK1tV6jSwCeC7oEAM5i
9HOWqkbhcxyA+4IuAYCz2H9+s30efT6Ttat879WzDwA9GNEl/w8eVRLp
"], {{0, 165}, {
550, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> ColorProfileData[CompressedData["
1:eJyVeQdUFE3Tbs/MJsKSc0Zyzkkk55yjqCw5g0sSFERAJKiIBFFAFBBBFIwk
ERBUFJEkQVEQBQQUFQMgAvIPQd/ve/977j23z+mZZ2uqq5/qru6emuX3CLX1
gQEA4QT0YkuK1iGTSTF2GPSHbkyEtweEAiZO9AI4mUhhYUEwHQDBIRFkWyNd
PmcXVz78OKAEWEAPmIEYyTM8TMfa2nxD+8/9v8viENgwCJ5Lbdj638//r4Xe
yzvcEwDIGsUeXuGewSi+DQCGzTOMHAEAtguVC0RHhG3g+Q3aZJQgALgNX5h8
tzDbBvbYwpKbOva2eijWBoBATSKRfQGg2eDNF+Xpi9qhQTniGEK8/ENQ1QQU
a3r6kbwA4GhFdSSDg0M38ByKRT3+w47vf9n0+GuTRPL9i7d82SwEff/wsCBS
zP/ncPy/S3BQ5J8+dqCV2o9sbLvhMzpuFYGhZhuYGsVNIR6WVihmQPFjf69N
/Q084hdp7LCtP+cZroeOGWABAAZeJH0zFHOhmCUy0EFnG8uTyJttUX3Y0j/C
xH4be5BDbbftw1EhQZbm23ZS/bxN/uDz3uEGdn90fPwNTVCMRhp8O9bP3mmL
J/wgyt/REsU0KO4ND7Qz2247FuunZ/lHhxxpu8FZEMU/fMiGtls6CFtw+B+/
EGlP0mZfaCwg2hF+9sZbbRFn73Bn8z8cvLz1DbY4IF7eIQ7b3BA0unRtt9um
hAVZb+sj572DjGy3xhm5Hh5l96dtfwQaYFvjgLwLIJlab/e1GBZhbb/FDQMD
c6AH9AEfiESrBwgFAcC/e65uDv219cQQkAAZ+AJvILUt+dPCafNJCHq1A7Hg
E4q8QfjfdrqbT71BFCpf+yvdukoBn82nUZstAsF7FAdjODCaGHWMOXrVRqs8
RhWj9qcdH+2fXnEGOH2cMc4QJ/aXhyfKOgitZOD/f5CZoXdv1LsNLiF/fPjH
HvY9tg/7DjuIHce+BI5gctPKttY+/0Tyv5jzAQswjloz3PbOA7U5+0cHI4yy
VsLoYjRQ/ih3DAuGA0hhFFFPdDBaqG9KqPQ/GUb+5fbPWP67vw3W/+nPtpxG
nEZpm4XH35nR+6v1byt6/zFGXujd7N+aSCpyC+lA7iNPkCakDvAhLUg90oXc
28B/I2FyMxL+9Ga7yS0QteP/R0e2SnZWdvVffZO2+98Yr/AI7wMRG4tBLzQs
huzv6xfBp4Puxt58JiGe0pJ88rJyygBs7O1bW8d32809G2Lp+UdGQvdFVXkA
KHX/kYWie0B1LhrSZ/+RCaPrkl0NgJu2npHkqC3ZxnaMnhiUgBZdFeyABwgA
UdQfeaAM1IE2MACmwArYAxewFx1xPxCMco4Gh8ARkAIywCmQC86BYlAKKsA1
cBPUgSZwHzwCT0EvGASv0LiYAh/BPFgEKxAE4SEixAixQ7yQECQByUOqkCZk
AJlDtpAL5A75QiFQJHQISoIyoNPQOegiVAndgBqg+9ATqA96Cb2FZqFv0C8Y
galhJpgbFoZlYFVYBzaD7eE9sC+8H46Fk+GTcD5cAl+Fa+H78FN4EB6HP8IL
CECoEBaEH5FCVBE9xApxRXwQMhKPpCN5SAlSjTSi8/wcGUfmkGUMDsOI4cNI
obFpjHHAeGL2Y+IxxzHnMBWYWswDzHPMW8w85jeWiOXCSmB3Yk2wzlhfbDQ2
BZuHLcfewT5E180UdhGHw7HgRHAq6Lp0wQXgDuKO44pwNbhWXB9uAreAx+PZ
8RJ4DbwVnoSPwKfgz+Kv4lvw/fgp/E8CFYGXIE8wJLgSQgiJhDzCFUIzoZ8w
TVihoKMQothJYUXhRRFDkUlRRtFI0UMxRbFCSU8pQqlBaU8ZQHmEMp+ymvIh
5WvK71RUVDuo1KhsqPypEqjyqa5TPaZ6S7VMzUAtTq1H7UYdSX2S+jJ1K/VL
6u9EIlGYqE10JUYQTxIrie3EMeJPGkYaaRoTGi+awzQFNLU0/TSfaSlohWh1
aPfSxtLm0d6i7aGdo6OgE6bToyPRxdMV0DXQDdMt0DPSy9Fb0QfTH6e/Qv+E
foYBzyDMYMDgxZDMUMrQzjDBiDAKMOoxejImMZYxPmScYsIxiTCZMAUwZTBd
Y+pmmmdmYFZkdmQ+wFzAfI95nAVhEWYxYQliyWS5yTLE8ouVm1WH1Zs1jbWa
tZ91iY2TTZvNmy2drYZtkO0XOx+7AXsgexZ7HfsoB4ZDnMOGI5rjPMdDjjlO
Jk51Tk/OdM6bnCNcMJc4ly3XQa5Sri6uBW4ebiPuMO6z3O3cczwsPNo8ATw5
PM08s7yMvJq8/rw5vC28H/iY+XT4gvjy+R7wzfNz8RvzR/Jf5O/mX9khssNh
R+KOmh2jApQCqgI+AjkCbQLzgryCFoKHBKsER4QohFSF/ITOCHUILQmLCDsJ
HxOuE54RYRMxEYkVqRJ5LUoU1RLdL1oiOiCGE1MVCxQrEusVh8WVxP3EC8R7
JGAJZQl/iSKJPkmspJpkiGSJ5LAUtZSOVJRUldRbaRZpc+lE6TrpzzKCMq4y
WTIdMr9llWSDZMtkX8kxyJnKJco1yn2TF5f3lC+QH1AgKhgqHFaoV/iqKKHo
rXhe8YUSo5KF0jGlNqU1ZRVlsnK18qyKoIq7SqHKsCqTqrXqcdXHalg1XbXD
ak1qyzuVd0bsvLnzi7qUeqD6FfWZXSK7vHeV7ZrQ2KFB0rioMa7Jp+mueUFz
XItfi6RVovVOW0DbS7tce1pHTCdA56rOZ11ZXbLuHd0lvZ16cXqt+oi+kX66
frcBg4GDwTmDMcMdhr6GVYbzRkpGB41ajbHGZsZZxsMm3CaeJpUm86YqpnGm
D8yozezMzpm9Mxc3J5s3WsAWphbZFq8thSxDLOusgJWJVbbVqLWI9X7ruzY4
G2ubApv3tnK2h2w77Bjt9tldsVu017XPtH/lIOoQ6dDmSOvo5ljpuOSk73Ta
adxZxjnO+akLh4u/S70r3tXRtdx1YbfB7tzdU25KbiluQ3tE9hzY82Qvx96g
vff20e4j7bvljnV3cr/ivkqyIpWQFjxMPAo95j31PM94fvTS9srxmvXW8D7t
Pe2j4XPaZ8ZXwzfbd9ZPyy/Pb85fz/+c/9cA44DigKVAq8DLgetBTkE1wYRg
9+CGEIaQwJAHoTyhB0L7wiTCUsLG9+/cn7t/nmxGLg+HwveE10cwoa85XZGi
kUcj30ZpRhVE/Yx2jL51gP5AyIGuGPGYtJjpWMPYSwcxBz0Pth3iP3Tk0Ns4
nbiL8VC8R3zbYYHDyYenEowSKo5QHgk88ixRNvF04o8kp6TGZO7khOSJo0ZH
q1JoUsgpw8fUjxWnYlL9U7vTFNLOpv1O90rvzJDNyMtYPe55vPOE3In8E+sn
fU52Zypnnj+FOxVyaihLK6viNP3p2NMT2RbZtTl8Oek5P3L35T7JU8wrPkN5
JvLMeL55fv1ZwbOnzq6e8zs3WKBbUFPIVZhWuFTkVdR/Xvt8dTF3cUbxrwv+
F15cNLpYWyJckleKK40qfV/mWNZxSfVSZTlHeUb52uWQy+MVthUPKlUqK69w
Xcmsgqsiq2avul3tvaZ/rb5aqvpiDUtNxnVwPfL6hxvuN4Zumt1su6V6q/q2
0O3CO4x30muh2pja+Tq/uvF6l/q+BtOGtkb1xjt3pe9ebuJvKrjHfC+zmbI5
uXm9JbZloTWsde6+7/2Jtn1tr9qd2wce2Dzofmj28PEjw0ftHTodLY81Hjc9
2fmkoVO1s+6p8tPaLqWuO8+Unt3pVu6u7VHpqe9V623s29XX3K/Vf/+5/vNH
AyYDTwctB/uGHIZeDLsNj7/wejHzMujl15GokZVXCa+xr9NH6UbzxrjGSt6I
vakZVx6/91b/bdc7u3evJjwnPk6GT65OJb8nvs+b5p2unJGfaZo1nO39sPvD
1MewjytzKZ/oPxV+Fv18+4v2l6555/mpr+Sv69+Of2f/fvmH4o+2BeuFscXg
xZWl9J/sPyuWVZc7fjn9ml6JXsWv5q+JrTX+Nvv9ej14fT2MRCZtvgogaIV9
fAD4dhkAogsAjL3oOwXNVu61XRBoI+UAwBGShj7CD5AkjB1WGyeC5yCwUfBS
alBZUgcST9E00M7RSzF4M5YyTbCIs8awtXDQcjpxlXF/593Fl8z/TIBe0Fbo
hPBTUSCmIO4jcUayU2pJRlTWRi5BvkphUAlWllPZo5quVrvz7S6ihqqmu1aa
9g2d13oEfWUDT8NTRvXGY6aQmaC5kUWAZabVbesXNj/tWOwVHKwcg51OOFe7
PHV9u3vebWnPyj7gTkli95Dy1PGy9d7n4+1L8rPz3xXAFwgFjge1BF8ISQr1
C7Per0rmCyeEf4kYimyOqojOPhAfExTrctDkkEacSrzyYbUEnSNmiU5J3skR
R4+m5BwrS72V1prelTF0/M2J6ZOfMr+dWshaPL2QvZDzKw9zhjlf8qzROc+C
w4X5RdXnW4qfXhi4OFIyXjpb9qMcucxcIV6pe8WtKvpqzrWb1X01X2/Q31S4
ZXc7/M6p2sq6xvr7De2NrXfvNt25V9Nc2VLaWnQ/ty29/dCDgId2j5Q72DqW
H48/6el89LS96/6zpu6anvze8D69fmL/8+cFAz6DSkPYoeHhihdRL7VHcCMd
aHwpvZ4ezRpTH5t4c2Jcffzj2+J3thPIRM2kw+TyVM57yfct07bTkzNHZ2Vm
Jz9UfAyZU5hb+FTz2fML/Zc789bz778e+sb67dH3zB8hC6RFHzSOJn89XJNe
X9+cfwHoOhyAyCMzmBvYBJwzXoMgRSFCKUK1g1qWuJPGhtaTLp6+mKGZcZaZ
jkWVlcSWyn6bY4yLiluBZzdvAt9F/pYdrwQWhKiEeUWURE3E3MVjJLIlb0h1
Sc/IYuT45XcpuCpGKGUol6k0qD5Te7fzxy6cBqemnJaFdpBOpu51vV79T4YE
I25jeRMDUwczT/MQiwOW8VZJ1kdtUmxT7dLtjzukOyY7xTj7udi76u/WcjPc
47o3el+u+3VSm0en50OvO96FPgd9nfxk/an95wJ6AxuDKoMLQjJDE8PI+93I
2uG84SsRg5HXolKiPQ4YxMjGCh7kPsQexxxPdxh3eDHh3ZHOxBtJucnRR/ek
mB7TTzVPI6Ufybh0/NGJsZOfMxdOLWUtnP6ePZ/zKXcu7/OZn2fpzqkVhBSW
F3WfnyievTB18U3Jy9K+sseXmsubLndWfLrCX7XnauG1lzVM1y1vpKK71/Id
6VqvuoL6/kbsXcWmffeONpe3NLU237/Sdqo97kH0w4RHmR1Fj0ufnO88+TSy
y+6ZVDeme6TnZm9GX0C/zXODAYNBmyGP4cgXyS+PjcS98nmtN8oxOjfW8ObY
uPNbqXeEd+8n2ieLpva/156mnh6YKZ09/MH/o9ec36fgz2FfwubDvpK/RX2P
+RG94L9otES7dOunwc+ny67Ln371rlKvjWzOvwR4AJlBL2BvBIdkYiQwPdhY
nAxuFn+J4EchQ7FM2UlVTB1NtKWRp6WhXaR7Sd/KUMmYzRTH7Mtiy6rBJsbO
zL7KMcPZz9XMXc1TylvAl8efsyNTIEUwSogkbCDCJ/JTtEusWDxcwliSXwqW
mpUelnks2yh3RT5fIUHRXUlNGafco5Kr6qzGrvZyZ5G61y55DZzGmGatVqa2
n46+rrAenT7Q/24wbThkdNc4z8TbVMh03Czf3MoCb9FumWRlYs1m/cGm2Tbb
zs9e3YHoMOZ4zemQs6kLs8sb14rdoej5v7zn3t6EfXruBPc+UqFHoOcuL2qv
Ee/LPvt9VX1X/Vr8EwK0A0Fga9CRYL0QTMjD0KNhOmE/91eRXdAzuzLCKuJH
ZH7Urqix6IQD3AfuxbjHssSOHKw6lBTnHC8av3i4PSH7iG+ifpJ4MttRqhSQ
8uPYROqztJr04xmk44on8CdGTl7PTD8VmGV0muH0o+zd2XM5sbk6ebpnUs8S
zqUXTBaxn5cvVrugdlGpRKZUtIz/Ens5/WXKCopKWjSSNK66XztWfa3m+fXV
m6K3XG+fvtNXx1Tv0lDYONyEvSfWbNTi0Xr4/vm25vY3D9Yf8XfoPfZ9crzz
xtOhrrVusZ7dvWf6xp7LD5wY/Dxs96JhhP9V7qjMG5q30ZMZMzGfLL8tLtts
zP/WN7iNgkOz02w0z3Q8gdZZALLq0DzzLgCslABYEwGwVwPwsWoAG1UDKPDo
3/MDQhNPAppzsgBeIAYU0UzTHLiiWfMBkIZmlFdBM+gH78EqxACJQdpofhgO
nUDzwYfQBAzB/LAu7AUfQ7O8fvgXIoBYILFIBTKMIWB2YoIxpZiXWAasGZqR
teMgnDYuAdeGx+JN8afwLwj8hCBCAwWewomiguIXpQXlRcolKkuqCmoMtQd1
O1GImEb8TGNP04RmOll0gG4/3SS9C30PgyHDPUZVxlqmnUztzLbMEyyRrDjW
PDZhtnp2S/YZjlROOc4JrmJuDx4Jnp+8j/hy+b12KArgBF4J3hLKFA4SMROV
ECOKzYsPStyVPC8VL+0moybLJDsv90z+ikKaop+SqbK0CrPKuuontbGd/eqd
ux5qPNDs0OrWHtGZ0V3UBwY4dJ8jGBNMKEypzZjM+S0ULS2tQqxzbJpsp+yJ
DoqOLk5xzhdcHrhOu1Htkd3ruO+Qexmp2+Onl6C3nc9R3ya/XwF6gWeDlkM8
Q/v3G5KbIhQja6KlDtyI3XWwNy70MFfCUGJOsvnRxWM5aZLpD497n2TOfJP1
LHs0dz2f75xaofn5fRdiSi6UjVyWqrxwVbZ6/MbF23vrqBqqm/a0SLTxPjR8
XNJF3SPatziQNSz6su/1+Tdn3vW/d59d/sTw5eo38EN2UW1pfTn9V/3KwOrd
tdLfYesqm/sHtPnNgQFwAmEgD7SABXADwSAeZIEy0AB6wBRYg1ggGcgU8oGS
oBLoPvQOxsAisDlMhs/B7fAXhAsxQw4hNcgkhgNji8nAPMRCWA3sQexd7CpO
C5eEe4Knw7vgL+G/EXQI2YT3FOoU2RRzlIbonK9SOVPdRjNhMvUAUY14gYaK
5gDNNK0LbTedIV0rvSZ9C4MeQyejHeMompn+Ys5kEWd5yrqfjYWtlt2G/T1H
DCeRs4xLm2uSO4vHlJeGd5TvFv/JHf4CuoJsgh+F7gmfEvER1RUTEmeQIEhi
pQjSNDIMsvRyBLll+RmFYcVOpfvK91U6VV+pfVOn2SWrYaPprxWhTdbx03XW
M9JXM1A0VDUyMt5nEm960azDfN6S08rAOhA903LsztjnOuQ4XnBqcf7qqrQ7
we3ZXp59Ee49HgKePl653nd8un0n/VYCWAIVguyDo0LOhbaGfSCzhhtGREVe
jho5QBdjEZt58EWccHzc4Ykjvkl0yZ0pEam4tGMZmOOpJzkz27MSs51z9c6o