-
Notifications
You must be signed in to change notification settings - Fork 0
/
Exam1.nb
2112 lines (2009 loc) · 75 KB
/
Exam1.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 76596, 2103]
NotebookOptionsPosition[ 71946, 1977]
NotebookOutlinePosition[ 72362, 1995]
CellTagsIndexPosition[ 72319, 1992]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["\<\
SDS 384.7 Bayesian Statistical Methods Exam 1 (Take-Home Part) Fall 2016\
\>", "Title",
CellChangeTimes->{
3.686423186054118*^9, {3.686423399375265*^9, 3.6864234081928883`*^9}}],
Cell["course #: 56955", "Subtitle",
CellChangeTimes->{{3.686423423618651*^9, 3.686423427225672*^9}}],
Cell["Qi Chen(qc586)", "Author",
CellChangeTimes->{{3.686423193419901*^9, 3.68642319726484*^9}}],
Cell[CellGroupData[{
Cell["Summary of answers", "Section",
CellChangeTimes->{{3.686522745292321*^9, 3.6865227492576427`*^9}}],
Cell[CellGroupData[{
Cell["problem 1", "Subsection",
CellChangeTimes->{{3.686522759619779*^9, 3.686522783790353*^9}}],
Cell[CellGroupData[{
Cell[TextData[{
"a. ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
SubscriptBox["p", "1"], "(",
RowBox[{
SubscriptBox["\[Theta]", "1"], ",",
SubscriptBox["\[Theta]", "2"]}], ")"}], "=",
RowBox[{"6",
RowBox[{
SubscriptBox["\[Theta]", "1"], "(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "1"]}], ")"}],
RowBox[{
SubscriptBox["I",
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}]], "(",
SubscriptBox["\[Theta]", "1"], ")"}],
RowBox[{
SubscriptBox["I",
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}]], "(",
SubscriptBox["\[Theta]", "2"], ")"}]}]}], TraditionalForm]]]
}], "Item",
CellChangeTimes->{{3.6865228602971888`*^9, 3.686522864687993*^9}}],
Cell[TextData[{
"b. ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
SubscriptBox["p", "4"], "(",
RowBox[{
SubscriptBox["\[Theta]", "1"], ",",
RowBox[{
SubscriptBox["\[Theta]", "2"], "|",
SubsuperscriptBox["t", "1", "*"]}], ",",
SubsuperscriptBox["t", "2", "*"]}], ")"}], "=",
RowBox[{
FractionBox[
RowBox[{"\[CapitalGamma]", "(",
RowBox[{"355", "+", "660"}], ")"}],
RowBox[{
RowBox[{"\[CapitalGamma]", "(", "355", ")"}],
RowBox[{"\[CapitalGamma]", "(", "660", ")"}]}]],
FractionBox[
RowBox[{"\[CapitalGamma]", "(",
RowBox[{"442", "+", "420"}], ")"}],
RowBox[{
RowBox[{"\[CapitalGamma]", "(", "442", ")"}],
RowBox[{"\[CapitalGamma]", "(", "420", ")"}]}]],
SuperscriptBox[
RowBox[{
SubsuperscriptBox["\[Theta]", "1", "354"], "(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "1"]}], ")"}], "659"],
SubsuperscriptBox["\[Theta]", "2", "441"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "2"]}], ")"}], "419"],
RowBox[{
SubscriptBox["I",
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}]], "(",
SubscriptBox["\[Theta]", "1"], ")"}],
RowBox[{
SubscriptBox["I",
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}]], "(",
SubscriptBox["\[Theta]", "2"], ")"}]}]}], TraditionalForm]],
CellChangeTimes->{{3.686433192797956*^9, 3.686433252721784*^9}}]
}], "Item",
CellChangeTimes->{{3.6865228602971888`*^9, 3.686522889086219*^9}}],
Cell[TextData[{
"c. ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["\[Tau]", "1"], ":",
RowBox[{"[",
RowBox[{
RowBox[{"-", "0.2081532"}], ",",
RowBox[{"-", "0.1203244"}]}], "]"}]}], TraditionalForm]],
FormatType->"TraditionalForm"],
"; ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["\[Tau]", "4"], ":",
RowBox[{"[",
RowBox[{"0.4203936", ",", "0.6129245"}], "]"}]}], TraditionalForm]],
FormatType->"TraditionalForm"],
"; number among ",
Cell[BoxData[
FormBox[
RowBox[{"500", ":",
RowBox[{"[",
RowBox[{"149", ",", "200"}], "]"}]}], TraditionalForm]],
FormatType->"TraditionalForm"]
}], "Item",
CellChangeTimes->{{3.6865228602971888`*^9, 3.686523040372628*^9}}],
Cell["d. [-0.208123,-0.11914]", "Item",
CellChangeTimes->{{3.6865228602971888`*^9, 3.686523049948635*^9}}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["problem 2", "Subsection",
CellChangeTimes->{{3.686522759619779*^9, 3.686522783790353*^9}, {
3.686523075228943*^9, 3.6865230753470297`*^9}}],
Cell[CellGroupData[{
Cell["statistic", "Item",
CellChangeTimes->{{3.686523079556272*^9, 3.686523080932911*^9}}],
Cell["likelihood function", "Item",
CellChangeTimes->{{3.686523079556272*^9, 3.6865230911776743`*^9}}]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Problem 1", "Section",
CellChangeTimes->{{3.686423534058366*^9, 3.686423535599634*^9}}],
Cell[TextData[{
"A count n1=1011 of the respondents in the 1998 General Social Survey \
responded with their religious preference as Protestants, and the count of \
non-Protestant respondents was n2=860. Among the (n1=1011) Protestants, ",
Cell[BoxData[
FormBox[
SubsuperscriptBox["t", "1", "*"], TraditionalForm]]],
"=353 said that they agreed with a Supreme Court ruling that prohibited \
State or local governments from requiring the reading of religious texts in \
public schools. Among the (n2=860) non-Protestants, ",
Cell[BoxData[
FormBox[
SubsuperscriptBox["t", "2", "*"], TraditionalForm]]],
"=441 said they agreed. Assume that the two samples are the result of \
polling the opinions of randomly chosen samples of people, one each from the \
populations of all Protestants and all non- Protestants. Additionally, assume \
that the two samples are independent of each other."
}], "TextNoIndent",
CellChangeTimes->{{3.6864235374653177`*^9, 3.686423627266204*^9}}],
Cell[TextData[{
"Let ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Theta]", "1"], TraditionalForm]]],
" and ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Theta]", "2"], TraditionalForm]]],
" denote respectively the true proportions of all Protestants and all non- \
Protestants who agree with the Supreme Court ruling. Consider the problems of \
estimating the difference in the two proportions, ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["\[Tau]", "1"], "=",
RowBox[{
SubscriptBox["\[Theta]", "1"], "-",
SubscriptBox["\[Theta]", "2"]}]}], TraditionalForm]]],
", and the odds-ratio, ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["\[Tau]", "4"], "=",
RowBox[{
RowBox[{
SubscriptBox["\[Theta]", "1"], "(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "2"]}], ")"}], "/",
RowBox[{"[",
RowBox[{
SubscriptBox["\[Theta]", "2"], "(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "1"]}], ")"}], "]"}]}]}],
TraditionalForm]]],
". Suppose further that we believe a priori that, subjectively, ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["\[Theta]", "1"], "~",
RowBox[{"Beta", "(",
RowBox[{"2.0", ",", "2.0"}], ")"}]}], TraditionalForm]]],
" and ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["\[Theta]", "2"], "~",
RowBox[{"Beta", "(",
RowBox[{"1.0", ",", "1.0"}], ")"}]}], TraditionalForm]]],
" and that ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Theta]", "1"], TraditionalForm]]],
" and ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Theta]", "2"], TraditionalForm]]],
" are independent."
}], "TextNoIndent",
CellChangeTimes->{{3.686423711068437*^9, 3.6864237826569977`*^9}, {
3.686423911284202*^9, 3.686423950794403*^9}, {3.686424899994122*^9,
3.686424906057646*^9}}],
Cell["\<\
Note: Except for some changes in notation, Bayesian inferences in this \
context can be obtained by adapting example 3.1.3 on pages 39 to 41 of the \
Text.\
\>", "TextNoIndent",
CellChangeTimes->{3.686423968423953*^9}],
Cell["Answer the questions below.", "TextNoIndent",
CellChangeTimes->{3.686423976189032*^9}],
Cell[TextData[{
"a. State the joint prior density on ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Theta]", "1"], TraditionalForm]],
FormatType->"TraditionalForm"],
" and ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Theta]", "2"], TraditionalForm]],
FormatType->"TraditionalForm"],
"."
}], "Item",
CellChangeTimes->{{3.686423988074402*^9, 3.686424004475202*^9}}],
Cell[TextData[{
"Solution: As ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Theta]", "1"], TraditionalForm]],
FormatType->"TraditionalForm"],
" and ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Theta]", "2"], TraditionalForm]],
FormatType->"TraditionalForm"],
" are mutually independent, the joint pdf is given by"
}], "TextNoIndent",
CellChangeTimes->{{3.686424296327154*^9, 3.6864242979488583`*^9}, {
3.686424930083679*^9, 3.686424967551103*^9}}],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
SubscriptBox["p", "1"], "(",
RowBox[{
SubscriptBox["\[Theta]", "1"], ",",
SubscriptBox["\[Theta]", "2"]}], ")"}], "=",
RowBox[{
RowBox[{
SubscriptBox["p", "1"], "(",
SubscriptBox["\[Theta]", "1"], ")"}],
RowBox[{
SubscriptBox["p", "1"], "(",
SubscriptBox["\[Theta]", "2"], ")"}]}]}],
TraditionalForm]], "DisplayFormulaNumbered",
CellChangeTimes->{{3.68642497034866*^9, 3.6864250048821783`*^9}}],
Cell[TextData[{
"Notice that if ",
Cell[BoxData[
FormBox[
RowBox[{"\[Theta]", "~",
RowBox[{"Beta", "(",
RowBox[{"a", ",", "b"}], ")"}]}], TraditionalForm]],
FormatType->"TraditionalForm"],
","
}], "TextNoIndent",
CellChangeTimes->{{3.6864250141569233`*^9, 3.686425046647415*^9}, {
3.686425265138983*^9, 3.686425266621601*^9}}],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
SubscriptBox["p", "1"], "(", "\[Theta]", ")"}], "=",
RowBox[{
FractionBox[
RowBox[{"\[CapitalGamma]", "(",
RowBox[{"a", "+", "b"}], ")"}],
RowBox[{
RowBox[{"\[CapitalGamma]", "(", "a", ")"}],
RowBox[{"\[CapitalGamma]", "(", "b", ")"}]}]],
SuperscriptBox[
RowBox[{
SuperscriptBox["\[Theta]",
RowBox[{"a", "-", "1"}]], "(",
RowBox[{"1", "-", "\[Theta]"}], ")"}],
RowBox[{"b", "-", "1"}]],
RowBox[{
SubscriptBox["I",
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}]], "(", "\[Theta]", ")"}]}]}],
TraditionalForm]], "DisplayFormulaNumbered",
CellChangeTimes->{{3.686425049278576*^9, 3.686425055236416*^9}, {
3.686425270462144*^9, 3.686425308595943*^9}}],
Cell["Then", "TextNoIndent",
CellChangeTimes->{{3.686425323174445*^9, 3.686425328034952*^9}}],
Cell[BoxData[{
FormBox[
RowBox[{
RowBox[{
SubscriptBox["p", "1"], "(",
RowBox[{
SubscriptBox["\[Theta]", "1"], ",",
SubscriptBox["\[Theta]", "2"]}], ")"}], "=",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["p", "1"], "(",
SubscriptBox["\[Theta]", "1"], ")"}],
RowBox[{
SubscriptBox["p", "1"], "(",
SubscriptBox["\[Theta]", "2"], ")"}]}], "=",
RowBox[{
FractionBox[
RowBox[{"\[CapitalGamma]", "(", "4", ")"}],
RowBox[{
RowBox[{"\[CapitalGamma]", "(", "2", ")"}],
RowBox[{"\[CapitalGamma]", "(", "2", ")"}]}]],
RowBox[{
SubscriptBox["\[Theta]", "1"], "(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "1"]}], ")"}],
FractionBox[
RowBox[{"\[CapitalGamma]", "(", "2", ")"}],
RowBox[{
RowBox[{"\[CapitalGamma]", "(", "1", ")"}],
RowBox[{"\[CapitalGamma]", "(", "1", ")"}]}]],
RowBox[{
SubscriptBox["I",
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}]], "(",
SubscriptBox["\[Theta]", "1"], ")"}],
RowBox[{
SubscriptBox["I",
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}]], "(",
SubscriptBox["\[Theta]", "2"], ")"}]}]}]}],
TraditionalForm], "\[IndentingNewLine]",
FormBox[
RowBox[{"=",
RowBox[{"6",
RowBox[{
SubscriptBox["\[Theta]", "1"], "(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "1"]}], ")"}],
RowBox[{
SubscriptBox["I",
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}]], "(",
SubscriptBox["\[Theta]", "1"], ")"}],
RowBox[{
SubscriptBox["I",
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}]], "(",
SubscriptBox["\[Theta]", "2"], ")"}]}]}],
TraditionalForm]}], "DisplayFormulaNumbered",
CellChangeTimes->{{3.686425333305497*^9, 3.686425454403558*^9}}],
Cell[TextData[{
"b. State the joint posterior density on ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Theta]", "1"], TraditionalForm]],
FormatType->"TraditionalForm"],
" and ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Theta]", "2"], TraditionalForm]],
FormatType->"TraditionalForm"],
", given ",
Cell[BoxData[
FormBox[
SubsuperscriptBox["t", "1", "*"], TraditionalForm]],
FormatType->"TraditionalForm"],
" and ",
Cell[BoxData[
FormBox[
SubsuperscriptBox["t", "2", "*"], TraditionalForm]],
FormatType->"TraditionalForm"]
}], "Item",
CellChangeTimes->{{3.686423988074402*^9, 3.686424004475202*^9}, {
3.6864240564521017`*^9, 3.68642408168736*^9}, {3.686424253945273*^9,
3.686424254347034*^9}}],
Cell["\<\
Solution: First we would like to know the likelihood function\
\>", "TextNoIndent",
CellChangeTimes->{{3.686424306152122*^9, 3.686424308333721*^9}, {
3.6864254942451477`*^9, 3.686425499593038*^9}, {3.6864256400819902`*^9,
3.686425652179294*^9}}],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"L", "(",
RowBox[{
SubscriptBox["\[Theta]", "1"], ",",
RowBox[{
SubscriptBox["\[Theta]", "2"], ";",
SubsuperscriptBox["t", "1", "*"]}], ",",
SubsuperscriptBox["t", "2", "*"]}], ")"}], "=",
RowBox[{
RowBox[{
SubscriptBox["p", "2"], "(",
RowBox[{
SubsuperscriptBox["t", "1", "*"], "|",
SubscriptBox["\[Theta]", "1"]}], ")"}],
RowBox[{
SubscriptBox["p", "2"], "(",
RowBox[{
SubsuperscriptBox["t", "2", "*"], "|",
SubscriptBox["\[Theta]", "2"]}], ")"}]}]}],
TraditionalForm]], "DisplayFormulaNumbered",
CellChangeTimes->{{3.686425655591189*^9, 3.686425768575659*^9}, {
3.6864258094656143`*^9, 3.686425817180951*^9}}],
Cell[TextData[{
"Notice that the probability given ",
Cell[BoxData[
FormBox["\[Theta]", TraditionalForm]],
FormatType->"TraditionalForm"],
" is binomial:"
}], "TextNoIndent",
CellChangeTimes->{{3.68642584963597*^9, 3.686425863786065*^9}, {
3.686425989874386*^9, 3.686426015840377*^9}}],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["p", "2"], "(",
RowBox[{
SubsuperscriptBox["t", "1", "*"], "|",
SubscriptBox["\[Theta]", "1"]}], ")"}], "=",
RowBox[{
RowBox[{"(", GridBox[{
{
SubscriptBox["n", "1"]},
{
SubsuperscriptBox["t", "1", "*"]}
}], ")"}],
SuperscriptBox[
RowBox[{
SubsuperscriptBox["\[Theta]", "1",
SubsuperscriptBox["t", "1", "*"]], "(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "1"]}], ")"}],
RowBox[{
SubscriptBox["n", "1"], "-",
SubsuperscriptBox["t", "1", "*"]}]],
RowBox[{
SubscriptBox["I",
RowBox[{"{",
RowBox[{"0", ",", "1", ",", "\[Ellipsis]", ",",
SubscriptBox["n", "1"]}], "}"}]], "(",
SubsuperscriptBox["t", "1", "*"], ")"}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
SubscriptBox["p", "2"], "(",
RowBox[{
SubsuperscriptBox["t", "2", "*"], "|",
SubscriptBox["\[Theta]", "2"]}], ")"}], "=",
RowBox[{
RowBox[{"(", GridBox[{
{
SubscriptBox["n", "2"]},
{
SubsuperscriptBox["t", "2", "*"]}
}], ")"}],
SuperscriptBox[
RowBox[{
SubsuperscriptBox["\[Theta]", "2",
SubsuperscriptBox["t", "2", "*"]], "(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "2"]}], ")"}],
RowBox[{
SubscriptBox["n", "2"], "-",
SubsuperscriptBox["t", "2", "*"]}]],
RowBox[{
RowBox[{
SubscriptBox["I",
RowBox[{"{",
RowBox[{"0", ",", "1", ",", "\[Ellipsis]", ",",
SubscriptBox["n", "2"]}], "}"}]], "(",
SubsuperscriptBox["t", "2", "*"], ")"}], "."}]}]}]}],
TraditionalForm]], "DisplayFormulaNumbered",
CellChangeTimes->{{3.686425865696589*^9, 3.686425953307064*^9}, {
3.686426020924553*^9, 3.6864260490684643`*^9}, {3.6864324297345657`*^9,
3.6864325027535143`*^9}}],
Cell["As a result,", "TextNoIndent",
CellChangeTimes->{{3.686432515110013*^9, 3.6864325183472137`*^9}}],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
RowBox[{"L", "(",
RowBox[{
SubscriptBox["\[Theta]", "1"], ",",
RowBox[{
SubscriptBox["\[Theta]", "2"], ";",
SubsuperscriptBox["t", "1", "*"]}], ",",
SubsuperscriptBox["t", "2", "*"]}], ")"}], "\[Proportional]",
RowBox[{
SubsuperscriptBox["\[Theta]", "1", "353"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "1"]}], ")"}],
RowBox[{"1011", "-", "353"}]],
SubsuperscriptBox["\[Theta]", "2", "441"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "2"]}], ")"}],
RowBox[{"860", "-", "441"}]]}]}], "=",
RowBox[{
SubsuperscriptBox["\[Theta]", "1", "353"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "1"]}], ")"}], "658"],
SubsuperscriptBox["\[Theta]", "2", "441"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "2"]}], ")"}], "419"]}]}],
TraditionalForm]], "DisplayFormulaNumbered",
CellChangeTimes->{{3.686432522480756*^9, 3.686432603928624*^9}, {
3.6864330301001472`*^9, 3.686433070420886*^9}}],
Cell["The posterior joint density is evaluated as", "TextNoIndent",
CellChangeTimes->{{3.686432960140402*^9, 3.686432974087076*^9}}],
Cell[BoxData[{
FormBox[
RowBox[{
RowBox[{
SubscriptBox["p", "4"], "(",
RowBox[{
SubscriptBox["\[Theta]", "1"], ",",
RowBox[{
SubscriptBox["\[Theta]", "2"], "|",
SubsuperscriptBox["t", "1", "*"]}], ",",
SubsuperscriptBox["t", "2", "*"]}], ")"}], "\[Proportional]",
RowBox[{
RowBox[{"L", "(",
RowBox[{
SubscriptBox["\[Theta]", "1"], ",",
RowBox[{
SubscriptBox["\[Theta]", "2"], ";",
SubsuperscriptBox["t", "1", "*"]}], ",",
SubsuperscriptBox["t", "2", "*"]}], ")"}],
RowBox[{
SubscriptBox["p", "1"], "(",
RowBox[{
SubscriptBox["\[Theta]", "1"], ",",
SubscriptBox["\[Theta]", "2"]}], ")"}]}]}],
TraditionalForm], "\[IndentingNewLine]",
FormBox[
RowBox[{"\[Proportional]",
RowBox[{
SuperscriptBox[
RowBox[{
SubsuperscriptBox["\[Theta]", "1", "353"], "(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "1"]}], ")"}], "658"],
SubsuperscriptBox["\[Theta]", "2", "441"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "2"]}], ")"}], "419"],
RowBox[{
SubscriptBox["\[Theta]", "1"], "(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "1"]}], ")"}],
RowBox[{
SubscriptBox["I",
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}]], "(",
SubscriptBox["\[Theta]", "1"], ")"}],
RowBox[{
SubscriptBox["I",
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}]], "(",
SubscriptBox["\[Theta]", "2"], ")"}]}]}],
TraditionalForm], "\[IndentingNewLine]",
FormBox[
RowBox[{"=",
RowBox[{
SuperscriptBox[
RowBox[{
SubsuperscriptBox["\[Theta]", "1", "354"], "(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "1"]}], ")"}], "659"],
SubsuperscriptBox["\[Theta]", "2", "441"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "2"]}], ")"}], "419"],
RowBox[{
SubscriptBox["I",
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}]], "(",
SubscriptBox["\[Theta]", "1"], ")"}],
RowBox[{
SubscriptBox["I",
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}]], "(",
SubscriptBox["\[Theta]", "2"], ")"}]}]}],
TraditionalForm]}], "DisplayFormulaNumbered",
CellChangeTimes->{{3.686432976247189*^9, 3.6864330278566027`*^9}, {
3.686433079748555*^9, 3.686433148553187*^9}}],
Cell["By proper normalization, we found", "TextNoIndent",
CellChangeTimes->{{3.68643317991691*^9, 3.686433188141375*^9}}],
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
SubscriptBox["p", "4"], "(",
RowBox[{
SubscriptBox["\[Theta]", "1"], ",",
RowBox[{
SubscriptBox["\[Theta]", "2"], "|",
SubsuperscriptBox["t", "1", "*"]}], ",",
SubsuperscriptBox["t", "2", "*"]}], ")"}], "=",
RowBox[{
FractionBox[
RowBox[{"\[CapitalGamma]", "(",
RowBox[{"355", "+", "660"}], ")"}],
RowBox[{
RowBox[{"\[CapitalGamma]", "(", "355", ")"}],
RowBox[{"\[CapitalGamma]", "(", "660", ")"}]}]],
FractionBox[
RowBox[{"\[CapitalGamma]", "(",
RowBox[{"442", "+", "420"}], ")"}],
RowBox[{
RowBox[{"\[CapitalGamma]", "(", "442", ")"}],
RowBox[{"\[CapitalGamma]", "(", "420", ")"}]}]],
SuperscriptBox[
RowBox[{
SubsuperscriptBox["\[Theta]", "1", "354"], "(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "1"]}], ")"}], "659"],
SubsuperscriptBox["\[Theta]", "2", "441"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SubscriptBox["\[Theta]", "2"]}], ")"}], "419"],
RowBox[{
SubscriptBox["I",
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}]], "(",
SubscriptBox["\[Theta]", "1"], ")"}],
RowBox[{
SubscriptBox["I",
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}]], "(",
SubscriptBox["\[Theta]", "2"], ")"}]}]}],
TraditionalForm]], "DisplayFormulaNumbered",
CellChangeTimes->{{3.686433192797956*^9, 3.686433252721784*^9}}],
Cell[CellGroupData[{
Cell["\<\
c. Perform inferences approximately by Monte Carlo simulation of size N = \
1000 of relevant distributions, with random seed set at 97531:\
\>", "Item",
CellChangeTimes->{{3.686423988074402*^9, 3.686424004475202*^9}, {
3.6864240564521017`*^9, 3.68642408168736*^9}, {3.686424253945273*^9,
3.686424287184896*^9}}],
Cell[TextData[{
"A plot of the posterior distribution of ",
Cell[BoxData[
FormBox[
SubscriptBox["\[Tau]", "1"], TraditionalForm]],
FormatType->"TraditionalForm"],
"."
}], "Subitem",
CellChangeTimes->{{3.6864243295307093`*^9, 3.6864243335134974`*^9}}]
}, Open ]],
Cell["Solution: The plot is as follows", "TextNoIndent",
CellChangeTimes->{{3.686433779228815*^9, 3.686433781474854*^9}, {
3.686434904719287*^9, 3.686434916929521*^9}}],
Cell[BoxData[
FormBox[
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzt3Qu8FePi//FKoouKSqJOEU53JeWkfqILxTlRHQ6ipFCinG6nSD/5kZxK
FxFRcbpJueSSiETUKenG6X6jIt3pfn3+v+/zf836rb169t5rr1mz19prf96v
19CaNWvWM7Nn5jvzPM/Muvi+bq0eyJcnT54eZ//vf1q1/8f13bu379s6//++
aNS35/33nfG//xidN0+eyf87aKQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAABAoPbs2WOuv/56O/Tv3985zR133GHfv+2220LjnnvuudDn
Tp48GfP367PLly+P+fP4/+uwb9++pkaNGua8884zdevWNbNnz87wMxs3bjT7
9u3LphL+n2PHjplbb73V1K5d2zz//PNxnff27dtD2+S4cePiOu9UxnpDstE2
mSdPHju0bNnSOc0f/vAH+/5FF10UGnfvvfeGPnfixImYvvubb76xx6c2bdrE
9Hn8f08//XTob+EN8+bNc0574MAB8/jjj5uzzz7brFu3LptLaky3bt1CZfz7
3/8e13lv3rw5NO9+/frFdd6pjPWGZBNrLo0YMcK0aNHCDrFeL3nfSy758+c/
/9mux/z585tly5bZ44yuS1yefPLJ0HrPzlw6evSoGThwYJrsjHcu7dixI7RN
Tpo0Ka7zTmXkEpJNrLmUGdURrV692vz666/p5lY0uaRrMdU5RXNNdvz4cbNp
0yZz6tSpLJXz999/P228xq1Zs8Z+96FDh6Kal6bbtm3baeN/++03s3PnzqjL
FC6a5a9Vq5Zdj1WqVMl0ftHkUizLnpEFCxaYSy+99LRruqzmkv6+OoZu2LDB
HDx40FeZtmzZYrMynLabH3/8Mabr/2i2d9G8tY2sWrXK7nvRiNd2pbK5tvVo
cknf9dNPP0X9XYAfsebSgw8+aAoXLmyH8P14ypQp5pJLLklz/CldurS9vvIs
XrzYfs57X+f5ev3CCy+Epvn4449Ns2bNzDnnnGOnOeuss0yTJk3s8TKS9ttO
nTrZuilNe+6559pz86FDh4bK6NG1hV5rWf/5z3+aM844w5x55pnmmWeese/r
eFG/fv005S9QoIBp166dOXz4cGg+M2bMCM37+++/N7fccoudj6a/+OKLzaJF
i+yxRHX2+o68efPa3FixYkVUf5dolv+zzz6z358vXz47jf6v19dee61znq1a
tQqVUUPBggXNBRdcEHo/2mW/88477feUKlUqzfy//PLL0DqZMGFCaLxXz1ih
QgXz6quvZjmXtI3ec889djvxPqv1qfURfqzUv73vf+qpp0Ljr776ajvuoYce
Mm+++abdjjUPbS8PPPCAzZEXX3zRlCxZ0o4vWrSoefTRR6MqWzTbu0dlKl68
eJpptU4+//zz0DTx2q7UFqx53HDDDebrr7821apVC20j2j6URZ6Mcmn+/Pmm
evXq9nv0vsqvutgjR45EtX6AWITnktrL33rrrdMGb3/NrH1Jx0lv+9UxS8c4
bz/U+Dlz5tjptG9Fnjtr8NrBZ86caY+Hrml0LP3qq6/SLINXj+Xtd0WKFAmV
1xvv0bHMK59XVg0ffvihPT5pHXjjLrzwwtAxX0Pbtm1D83nnnXdC48uUKWOn
0/HIG6ds1PfrO4oVKxYaX7Zs2UyvQaJd/k8++cQ5TZ06dZzzvemmm06bVsdg
ycqyK980LjzvRX9fb/rx48eHxuvvOmDAAJttu3btynIu6Tjqnb/oGBl+nNTx
2bs+Tu/4qv4gGqcM1v/VN0Q5703rHbMjMyP8PMkl2u1dPvjgg9B8CxUqZMvg
vVbu6FpL4rVd/eUvfwkts77P+x5v+vPPP9/s3bs3w/Wm8iv7vPfCv69hw4ZR
/e2AWITnUmZDZrmkc0/vmOYdK3Redd1115nmzZubUaNGhcapDsn7vNoD9Fr7
ic55veuecuXK2eOb6h/U/8/Lm8suuyy0D4YfC3Vc0P6tugrtX+Fl93i5pOGa
a64xn376qb1uUh2RzvcrV65s91/vmKL6C+96UeXxhB8/tLzeeXvnzp1D45Xn
qnPS8VjXGN54nQenJyvLr/lqep0va3ylSpXs6/Tqh3Se/cgjj4TKoT57Kp9k
ZdmzmkvhsppLP//8c2j6V155JTR+8uTJtv5S26HqGyWzXNKgekxlsOrrwrOp
V69edjvWtbx3Xda6desMyxbt9i533323zSJdv6jtT9Prmsr7/rFjx9rp4rVd
ebnkbedaLq3Ljh07hsb/4x//SHe9aV14ea1s0+e1jwwfPjw07fvvv5/p3w+I
RWQu6fwscog2l7Rve+PUz07nyKpDSK++3ps2vH1J/VS98cOGDUszvc7Zvfdm
zZplx4Xnj+pUPNr3veN4ern07bffOsvl9RlQ+4PKf+WVV9rpVafmCT9+DB48
ODR+6tSpofGPPfZYaLza4b3xOndOT1aXX2rWrGnH6ToiM5m1L0Wz7NmZSzrH
8M7ZVQatgzfeeMP88ssvp02bWS7p8+FtP8phjde1R3i9lHLf24YzktXtXbz1
q3OEIUOGhD6vOmeJ13YVnkvh45UtXj2Ctpv01pvqdL1xOpcJ/7xXf3L77bdn
uH6AWMWzn7iOc6rPCM85DTpPfPjhh21/qXCuXAo/9nrnwZ633377tH02/Hwx
sg04fN/0eLmkc2LtY5G2bt1qBg0aZOuOws+nNSjnPOHHj/A81DmkN3706NGh
8e+9915o/PTp053rOZbll3jlUrTL7uWS6ofCqV4r3rkkauuJ3KaUJap3VHuM
J7Nc+uMf/5hmvl7mqp4snLc+db2Qkaxu79o2OnToYK89Iz+jjJJ4bVfetq/6
4Mg+IjfeeGOacw3Xegv/Pl23Va1aNTR4bcP16tXLcP0AsYr3/UuqH9F5pNpz
I/e9K664Ik0WuHJJ/Sm88ZpXONe55F133RUa59WXe1R/kV4uqR0gkupBvLp8
7c9qj9E1S9OmTe04ry0msizvvvtuaHx4O4LOcT3R5lJWl1/ikUtZWXYvlzRd
uI8++iiQXFKd17Rp02xZIvNSg96TzHJJ2184XeNovK6bwkWbSxLt9q4+F954
9ZNQ3wH1tfDGeW2r8dquwnMpsn+ql0tqL0pvvYVfn6kvpfqORA7aDoAgxDuX
dNzx2ix0vv/yyy/b81Rv2vB+Q944ZYvn9ddfD40fOXJkmnKEf6erHi+8vkLX
TuF1kB4vl9TuG8mre9exb/369aHx6hMVmWXRHD/UZ8QTbS5ldfkl1lxau3Zt
TMuu8whvHuF9rV977bVAcknHdrUb6rxfbSrqvxbe3uK1A8WaS5H967OSS9Fs
77oO9V5rPXuWLl0aGq92G4nXdhVeV6B72jyqxyxfvrwdr+vF9NZbeN+kyL6J
0fZvB2IVz1zy7qPReZjaWD3du3cPTav7Rjxe/yC1E+t4s3v3bntM9PJE55Xa
B9XGoDZknbN7529ev4f//Oc/oT5Rap/VsVz7s87nws9dPV4uqa9TJK/fl+qn
VBZRebzvVXk9QeVSVpdfspJL6g/vlUPtQV47TVaWXf2dI5dRfTMuv/xyX7mk
99QfXIO3jvR/rx9C796900zr9VlU3ZgEmUvq3+6VzWujinZ7D2938/oaSJcu
XULj1Zdegsgl/W31vDHVJ/To0SM0vk+fPumuN7WDefu99quVK1fa8Ton8JZZ
13tAEOKZS7pnxcsIHTP+67/+y95z4U2n56KFU/8x7z19ztsnNJ/w/qnh/9b5
vPqOhQs/DniD6sC9du1oc0nPB/Sm1/VU48aN7fE4vD+5V1cYVC7FsvxZySXd
vxO+zpWBOgZlZdl1nA0fr5xUGStWrOgrl1zHR52vaLm88TrX13al/vLedrZw
4cJ0Py/xyCU/27sywetjremVE941i/d51etJvHPJuz9P2e71F/f+xt7zEdNb
b+rzGL7taX/yzpn0b7/3NgPpiXc9nvaZ8DzQoH7POgZF3muuab3ji/ZP5YtH
+6Tah7xzYu0fDRo0sNdHLqoH0X07qm9SO4SOVTq39Y4ZnoxySX2ywtur9J2q
s1LbujfOe75NkLmU1eXPSi7pWOJdG2lQ27eumbKy7KJ7e7xjrcqoY7DqseKd
S6I62fbt25/WtqTlVl+LzD4fVC5JtNu77jVT/wFvGt1vpHWr/Ndr9QGUeOeS
9gfd7xZ+L5/qEry6x4zWm+heAl0He/lZokQJ+xzn9PZDIJmpXkf153oukKvf
m0f1UaqD170yLjpfVpt8eveiqt1Z+53r+THe/bautqSMqB5LzziPxzN4/Mps
+WOl9aV+D5Ft4llZdtVnqT9xdq0nrQuVWeWL7OOSaNFs7xqv53WEP2shKOG5
5NG6i+wjGC1lrOry/Px2AJBbePXdXn2SzgP3799vn+Pj3b+kfAJyE1cuAcge
OocOv58/clB91JIlSxJdTCBbkUtAYqkOpWfPnrbdXe1VapvVvYu6TkrvmQ5A
KlO/O913rPYrAIkX6+8UAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAQafHixeaLL77wNSxfvjzRiwEASAELFiwwefLkMQ0bNvQ1
aB7ff/99ohcHAJDDffDBB+bmm2/2PZ/69eubefPmxaFEAIDcjFwCACQTcgkA
kEzIJQBAMiGXAADJhFwCACQTcgkAkEzIJQBAMiGXAADJhFwCACQTcgkAkEzI
JQBAMiGXAADJhFwCACQTcgkAkEzIJQBAMiGXAADJhFwCACQTcgkAkEzIJQBA
MiGXAADJhFwCACSTeOVSpUqVzNVXX21atWoV89CsWTMzY8aMOCwVACCnilcu
FSlSxPTp08dMnz495mHs2LGmbt26cVgqAEBOFa9cOuecc8yLL77oax6qB1R9
IAAg9yKXAADJhFwCACQTcgkAkEzIJQBAMiGXAADJhFwCcrZTp06ZHTt2mN27
dye6KEBckEtAzrN161bTu3dvU758eZM/f36TJ08eOxQtWtTUqFHDdO/e3ezf
vz/RxQRiQi4BOcvmzZtN2bJlTbly5Wz+jBo1ykyePNlMmTLF7oM9e/Y0FSpU
sJm1fv36RBcXyDJyCchZunTpYho0aGCOHDmS7jTHjh0zjRs3Nv3798/GkgHx
QS4BOYv2kTFjxmQ63YQJE3iuF3IkcgnIWXr16mXatWuX6XTt27c3LVu2DL5A
QJyRS0DOsnTpUlOwYEH7/H1dE82fP9+sWbPGrFu3zixcuNBMnTrVtGjRwvaH
mDt3bqKLC2QZuQTkPMqgRo0amXz58oX64oUPTZo0MXPmzEl0MYGYkEtAznX0
6FGbUbNnzzYzZ840y5YtM7t27Up0sQBfyCUgNRw8eNAsXrzYrF271pw4cSLR
xQFiRi4BOcuQIUNMv3790owbOHCgOeuss0L1eBUrVjSffPJJgkoI+EMuATlL
27ZtTfPmzUOvx40bZ7NI9yvpN5+HDRtm+4erb4T6SAA5DbkE5CyRuVSvXj3z
pz/96bTpatWqFVV/8kgbN240b775ZqbD448/busMgXgjl4CcJTKXKleubJ9F
FOmll14yNWvWzPL81bf8b3/7W6ZDiRIlzFtvveVrWQAXcgnIWZRL1113nX3W
kPTp08f07dv3tOk6dOhg+4sHRddoCxYsCGz+yL3IJSBnUd2c2pPUz6FOnTqm
adOmpnDhwmbJkiX2/S1btphOnTqZAgUKRPW8oliRSwgKuQTkLLpnSf0Zxo8f
b7p27WquvfZaU6xYMTNt2jT7/ssvv2xzS893PXnyZGDlIJcQFHIJSA3Hjx+3
/9+2bZu9ZgoauYSgkEsAYkEuISjkEoBYkEsICrkEIBbkEoJCLgE5S+3ate2z
HKIZ2rRpE1g5yCUEhVwCcpavvvrKlCpVyvbBGzx4sBk6dGi6g/bvoJBLCAq5
BOQ8+h1AXQ8NGjQoYWUglxAUcgnImfRc8SJFiiTs95bIJQSFXAJyJv3Gkn6T
9tdff03I95NLCAq5BCAW5BKCQi4BiAW5hKCQSwBiQS4hKOQSgFiQSwgKuQQg
FuQSXDZt2mTGjh3ra9Bz8vX7LX6RS0DuQi7BpXjx4qZBgwamffv2MQ+6b1y/
h+wXuQTkLuQSXKpUqWJ++OEHX/N44oknzPnnn++7LOQSkLuQS3BJxVy65ppr
7O+b+Rl0vyGAYJFLcEm1XJo+fbr9/eczzjjD16B5rF692vcyAUgfuQSXVMsl
fV7z8evPf/6zef/9933PB0D6yCW4kEtu5BIQPHIJLuSSG7mEeNLvHT366KNm
2bJliS5KUiGX4EIuuZFLiKcVK1aYypUr23bLK664wgwbNszs2LEj0cVKOHIJ
LuSSG7mEIHz77bfmkUceMSVLljRnnnmmueWWW8w777xjjh07luiiJQS5BBdy
yY1cQpCUQ3p+13333WeKFi1qc6pbt25m1apViS5atiKX4EIuuZFLCNL69evN
U089ZWrWrGnr9urWrWuP0Xnz5jX9+vVLdPGyDbkEF3LJjVxCvO3cudOMGjXK
HouVRaVLlzY9e/ZMs/+99dZb9r3vvvsugSXNPuQSXMglN3IJ8fTll1/a9iQN
LVu2tNuWnisS6cCBAzaXZs6cmYBSZj9yCS7kkhu5hHhSf4do+uApq7Zv355N
pUo8cgku5JIbuYR4O3XqlJk0aZLZsGFDaFznzp1zXV+HcOQSXMglN3IJ8abf
KFM93jfffGNfK6f0jGE9j1HXUrkRuQQXcsmNXEI8rV271hQoUMCsWbPmtPdG
jBhhChUqZI4ePZqAkiUWuQQXcsmNXEI8jR492l4buezevdv2dVi3bl02lyrx
yCW4kEtu5BLi6YsvvjD58+c3P/3002nvvfHGG7Yu79ChQwkoWWKRS3Ahl9zI
JcTT4cOHTdmyZU3Dhg3N559/brZs2WKvjyZPnmzKlStn7rjjjkQXMSHIJbiQ
S27kEuJN10rVq1e3dXbhw1//+lezZ8+eRBcvIcgluJBLbuQSgqJrJT0bT/fO
bty4MdHFSShyCS7kkhu5BASPXIILueRGLiHedN/SbbfdZurVq2dq16592pAb
kUtwIZfcyCXEk9qWtF2q74OyqUOHDqcNiaR7fPWMJPVZz07kElzIJTdyCfE0
fvx4U6xYsaTq37B161bTu3dvU758eduH3euHod+DqlGjhunevbvZv39/oGUg
l+BCLrmRS4incePGmapVqya6GCGbN2+2127qo6780e9vqM/6lClT7D6k39+o
UKGCzSz9VlRQyCW4kEtu5BLiadOmTaZgwYK+97V46dKli2nQoIE5cuRIutPo
N3UbN25s+vfvH1g5yCW4kEtu5BLi6ZdffrFtSCVKlDAPPfSQGThwoHnuuefS
DNmpfv36ZsyYMZlON2HCBPtbukEhl+BCLrmRS4inWbNm2XabjIbs1KtXL9Ou
XbtMp2vfvr39HcOgkEtwIZfcyCUERb9Ju3z5ctunIKN6tCAtXbrU1is2a9bM
XhPNnz/fPutcz0ZauHChmTp1qmnRooXtDzF37tzAykEuwYVcciOXEG96zkPr
1q1D/d50/O/WrZvp0aOHOXjwYLaXRxnUqFEjky9fvtOejaShSZMmZs6cOYGW
gVyCC7nkRi4hnvTbSrVq1bLPx9NvAOr3lpRL06dPt/3H77///oSWTRk1e/Zs
+2ykZcuWmV27dmXLd5NLcCGX3MglxNNHH31k95F9+/bZ12pPUi7Jp59+asqU
KWPvbU0U7qtFPKheWtf/6tvjZyhdurSt6/aDXAIyNnz4cHP99deHXofn0t69
e229WXY/w5X7ahFv//rXv0zTpk3t/XB+Bv0e2XvvveerLOQSkLEZM2bY31HX
NYmE55J+y1a5kJ2/o859tQiCcunuu+/2PR/tK+TS6cglxJOuOy655BJz1VVX
2eN/kSJFzMSJE02/fv1MyZIlTdu2bbO1PEHfV7tz506bu5kN1apVC7xvBbIP
ueRGLiFZqb5cfR8i+73deuutti4vOwV9X61+X0qfy2woXLiwzWekBnLJjVxC
Mjt58qRZtGiRmTRpkpk2bZpZuXJlQsrBfbUIArnkRi4BmeO+WgSBXHIjl5CM
dOxt2LBhhkN2475axBu55EYuIRktWbLE3HHHHWmGm266yfaF0D6o/tqJwn21
iBdyyY1cQk6i+1nVN045lRuRS6mFXHIjl5DT6LeZdB9h0PewJiNyKbWQS27k
EnKaf//737Y9R89fyG3IpdRCLrmRS0hGuiYaMWJEmuH555+399XqWWCVKlXK
1vLUrl3b9seLZmjTpk1g5SCXUgu55EYuIRnpua3a1yKHc8891z43b8WKFdla
nq+++sqUKlXKPst88ODBZujQoekOukc2KORSaiGX3MglIDq6X0nXQ4MGDUpY
Gcil1EIuuZFLQPSGDBlin9WXXf3CI5FLqYVcciOXkIyiua82fNiwYUO2lOvE
iRP23tlff/01W74vErmUWsglN3IJyWj16tX2mT958+a1z1Ho2rWr+etf/2qK
Fy9u++KpjSn8ntsff/wx0UXOFuRSaiGX3MglJCP1Ab/gggvM559/nma8rlc6
depkn++dG5FLqYVcciOXkIzGjRtnmjdv7nxPmaVrpp9//jmbS5V45FJqIZfc
yCUko+nTp5sSJUo4n+mwePFi++zU33//PQElSyxyKbWQS27kEpLRvn377G/g
qU1Jz0VVPqmvwdtvv20uvvhino+HlEAuuZFLSFbKo3Llyp32exK33367+e23
3xJdvIQgl1ILueRGLiGZHTt2zP4m3/jx481bb71lVq1alegiJRS5lFrIJTdy
CcnuwIEDZvny5bYu78iRI4kuTkKRS6mFXHIjl5CstmzZYlq3bh2qv9PvlXfr
1s306NHDHDx4MNHFSwhyKbWQS27kEpKRfhO2Vq1apnr16mbYsGGmUKFCNpfU
T0/PTr3//vsTXcSEIJdSC7nkRi4hGel54tpH1C9PihYtanNJPv30U1OmTBn7
27W5DbmUWsglN3IJyWj48OH2WUOe8Fzau3evrdfbuHFjooqXMORSaiGX3OKV
S40bN7b3mjz22GO+BrVvAzNmzLD72o4dO+zr8FwaPXq0yZ8/v63ry23IpdRC
LrnFK5dKlixpWrRoYZ5++umYh759+5oKFSr4LgtyPvW9u+SSS8xVV11lJk+e
bH9bYuLEifb3arWttW3bNtFFTAhyKbWQS27xyiUtj44Zfvzwww+mSpUqvsuC
1KBrZ/V9iLyv9tZbb7V1ebkRuZRayCU3cgnJSLmj66RDhw6ZRYsWmUmTJplp
06aZlStXJrpoCUUupRZyyY1cQjJSnZ2ujXQPE/4PuZRayCU3cgnJaNasWTaX
tE3g/5BLyUO/W6ljZ+nSpWMetI3Xq1fPd1nIJTdyCfG0fft2c9ddd5nzzjvP
dOjQwQwcONAMHTo0zZAbkUvJQ79bqXsVfvnll5gHbdvx6OtFLrmRS4injz/+
2D7jIaMhNyKXkseFF15of6PSjwceeMD+botf5JIbuQQEj1xKHuSSG7mEVHL8
+HFz+PDhRBcjqZFLyYNcciOXkEqGDBlin3sXTv3xcnvf8HDkUvIgl9zIJaQS
Vy51797d1K5dO0ElSj7kUvIgl9zIJaQScilz5FLyIJfcyCWkEnIpc+RS8iCX
3MglpBJyKXPkUvIgl9zIJaQScilz5FLyIJfcyCWkEuWSflepatWqoaFEiRLm
7LPPTjPOG3Ijcil5kEtu5BJSifYr/YZFtENuRC4lD3LJjVwCchdyKXmQS27k
EpC7kEvJg1xyI5eA3IVcSh7kkhu5BOQu5FLyIJfcyCUgdyGXkge55EYuAYlx
6tQps2PHDrN79+5s/V5yKXmQS27kEpB9dAzq3bu3KV++vL3PSr+BraFo0aKm
Ro0a9h7g/fv3B1oGcil5kEtu5BKQPTZv3mzKli1rypUrZ/Nn1KhRZvLkyWbK
lCl2H+rZs6f9PWxl1vr16wMrB7mUPMglN3IJyB5dunQxDRo0MEeOHEl3mmPH
jpnGjRub/v37B1YOcil5kEtu5BKQPerXr2/GjBmT6XQTJkwwdevWDawc5FLy
IJfcyCUge/Tq1cu0a9cu0+nat29vWrZsGVg5yKXkQS65kUtA9li6dKkpWLCg
adasmb0mmj9/vlmzZo1Zt26dWbhwoZk6dapp0aKF7Q8xd+7cwMpBLiUPcsmN
XAKyjzKoUaNGJl++fKG+eOFDkyZNzJw5c2Kat9qt1O88s0G/+TFv3rw4Lxli
QS65kUtA9jt69KjNqNmzZ5uZM2eaZcuWmV27dvmap/r2lSpVKtNB12Pjx4+P
z4LAF3LJjVwCEuvgwYNm8eLFZu3atebEiROBfx/1eMmDXHIjl4Dsod8sjNy+
Bw4caM4666xQPV7FihXNJ598Emg5yKXkQS65kUtA9mjbtq1p3rx56PW4ceNs
Ful+pbFjx5phw4bZ/uHqG6E+EkEhl5IHueRGLgHZIzKX6tWrZzMiUq1ataLq
Tx4rcil5kEtu5BKQPSJzqXLlyvZZRJFeeuklU7NmzcDKQS4lD3LJjVwCsody
6brrrrPPGpI+ffqYvn37njZdhw4dbH/xoJBLyYNcciOXgOyhujm1J6mfQ506
dUzTpk1N4cKFzZIlS+z7W7ZsMZ06dbLHh2ieVxQrcil5kEtu5BKQPXTPkvoz
6N6hrl27mmuvvdYUK1bMTJs2zb7/8ssv29zS811PnjwZWDnIpeRBLrmRS0Bi
HT9+3P5/27Zt9popaORS8iCX3MglIHchl5IHueRGLgG5C7nkn563690H7WfQ
M6H0PCo/yCU3cgnIOcgl/0aOHGk6duxoM8XPoOf3fvvtt77KQi65kUtAzkEu
+adcevjhh33Ph1xyI5eA3IVc8o9cciOX3JRLZcuWNQMGDPA1vPDCC76XB0hG
5JJ/5JIbueQ2Y8YM2x6p9eNn0DwmTpzoe5mAZEMu+UcuuZFLblqvWr9+3X33
3eZf//qX7/kAyYZc8o9cciOX3MglIGPkkn/kkhu55EYuARkjl/wjl9zIJTdy
CcgYueQfueRGLrmRS0DGyCX/yCU3csmNXAIyRi75Ry65kUtu5BKQMXLJP3LJ
jVxyI5eAjJFL/pFLbuSSG7kEZIxc8o9cciOX3MglIGPkkn/kkhu55EYuARkj
l/wjl9zIJTdyCcgYueQfueRGLrmRS0DGyCX/yCU3csmNXAIyRi75Ry65kUtu
5BKQMXLJP3LJjVxyI5eAjJFL/pFLbuSSG7kEZIxc8o9cciOX3MglIGPkkn/k
khu55EYuARkjl/wjl9zIJTdyCcgYueQfueRGLrnFK5fatGljXn31VXPw4EFf
w4kTJ3yXBYgncsk/csmNXHKLVy7VrFnT5MmTxxQsWDDmQZ+vWLGi77IA8UQu
+UcuuZFLbvHKJf2d9ff2Y9u2baZMmTK+ywLEE7nkH7nkRi65kUtAxnJ7Lj37
7LOmVatWpnXr1jEPl112mW2D9otcciOX3MglpKrcnkuqX3/zzTfNtGnTYh5u
vPFGU716dd9lIZfcyCU3cgmpKrfnktp+1SfJD10zkUunI5fcyCUgY+QSueRC
LrmRS0DwyCVyyYVcciOXgOCRS+SSC7nkRi4BwSOXyCUXcsmNXAKCRy6RSy7k
khu5BASPXCKXXMglN3IJCF5OzaXt27fbsrdo0cLXkD9/fnPgwAFfZSGX3Mgl
N3IJyFhOzaUBAwaYzp07233cz6D7anfu3OmrLOSSG7nklky5tHXrVlOsWDHT
tWtXX8Ojjz5qjh496nuZAMnJuaTjnl/kkhu55JZqufTdd9/ZfWD48OG+Bu0D
I0aM8L1MSC6nTp0yO3bsMLt3787W7yWXyCUXcsktFXNJ251fjzzyCLmUInQN
3bt3b1O+fHnbzqFjpIaiRYuaGjVqmO7du5v9+/cHWgZyiVxyIZfcyCW3Ll26
mJ49e5rFixf7GtRujMTZvHmzKVu2rClXrpzNn1GjRpnJkyebKVOm2H1If+MK
FSrYzFq/fn1g5chKLumaTsdwv8OhQ4d8l5tcciOX3Mglt3jlUv369e2+dOWV
V8Y8VKtWzc4DiaPziwYNGpgjR46kO82xY8dM48aNTf/+/QMrR1Zy6fXXX7fb
TYkSJWIeihcvbvLmzeu73OSSG7nkRi65xSuXVL+j34vxQ/dr6L4NJI7OL8aM
GZPpdBMmTDB169bN8vz1uSJFimQ6aJscO3Zs1PPUcbxw4cIxD4UKFQrVV8Zj
8FMWDZrHmWee6Xse8SqL3/lQFveg7TxZyuLV2SdDWZSPyVIWHRs0IHF69epl
2rVrl+l07du3Ny1btszy/I8fP27bpjIb1NdC00YrmnlmNuzZs8fs27fP96D7
jvyWJR7ziNd8kqksOndNlrIk03qhLMGWRXVESJylS5faa9ZmzZrZ65D58+eb
NWvWmHXr1pmFCxeaqVOnhu77nDt3bqKLCwDIBZRBjRo1CtUxRA5NmjQxc+bM
SXQxAQC5jO6TVkbNnj3bzJw50yxbtszs2rUr0cUCAAAAAAAAAAAAfNG9iX37
9rXPpmCI/3D33Xeb559/PuHlSMXhmWeeMR07dkx4OVJ10PPEp0+fnuhDFHKh
m2++2T6jQs+qYIj/oHsK77333oSXIxUH3QOo3xlKdDlSddDzTvTsViC76Zxo
2LBhiS5Gyrrwwgvt77Qh/ubNm2fPqRAMZdLIkSMTXQzkQuRSsMil4JBLwSKX
kCjkUrDIpeCQS8Eil5Ao5FKwyKXgkEvBIpeQKORSsMil4JBLwSKXkCjkUrDI
peCQS8Eil5Ao5FKwyKXgkEvBIpeQKORSsMil4JBLwSKXkCjkUrDIpeCQS8Ei
l5AoP//8s9m5c2eii5GyVq5cmaXfDkb09Pu769evT3QxUpbOp/htHgAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAMTTqVOnsvyZkydPBlCS1BTU+o1lvqkm
1nVw4sQJc/To0TiXJvXEun61brWO4z1fpL7XX3/dNGzY0Jx99tmmTp065osv
vsj0M5MnTzZVq1Y1+fPnN+eee665/fbbzZYtW0Lv79+/31SqVMn88Y9/TDN0
7NgxwCVJPloPvXv3NpdeeqkpXry4admyZabPtzxw4IDp0aOHKVOmjMmbN6/5
wx/+YJ555pk0z3SNZb6paMmSJeauu+4yxYoVMxdffLF56qmnov6sMv+mm24y
7dq1O+09baeR264G/W1yk1iODZ6NGzeaEiVKmA8//DCu80Xq+/LLL02BAgXM
Cy+8YJYuXWo6depkt5Xly5en+5kPPvjA5MmTx+7Pc+fONWPGjDGXXHKJqV69
eujcc8GCBXYa/TbGE088ERreeOON7Fq0pKDn/1esWNHMnj3brusrrrjC1KxZ
M8PzxLZt29qsVxZpPT722GM2//v16+drvqlGzwjXdnfnnXfafBo/frwpVKiQ
efrppzP97JEjR+y27m3HkcqWLWtuuOGGNNuuhtx0bRXLscGjTKpWrZpdv5G5
5Ge+yB0qV65s2rRpk2actqf77rsv3c80a9bMVKhQIc0x8M0337TboLY5eeWV
V0yRIkVydT3fihUrTL58+cx7770XGqffstB6mjVrlvMz+/bts5/p1atXmvGt
W7c2559/fszzTUX//d//bYoWLWoOHz4cGjdgwABTsmRJmzvpWbx4salSpYq9
ztQ6jcyl3bt323X50UcfBVX0HCGWY4O89NJLpnDhwvb60pVLsc4XuYPq3bTd
TJ8+Pc34xx9/3FxwwQXpfu7tt982n3zySZpxCxcutPN6//337euHHnoo9Dts
uTWbhg4das8DI8+xL7/8cnu946JjojJd55vhevbsaQoWLGjPBWKZbyr605/+
ZP72t7+lGbds2TK7Hep3ANOj8/OmTZuaTZs22XlE5pLqADQP/d6Y5MbtN9Zj
g1x00UWmT58+ZsOGDaflkp/5IneYM2eO3UZUVxRO5ztnnHFGlvbHrl272rom
b19WJqn+WPv8OeecY+tFBg0alKv28c6dO5ty5cqdNv66666z7XHR0jrTvq7P
xXO+OZ2ui7p3755mnH63Utv0tGnT0v3cjh07Qv925dKIESPs+b7q7VRXqu33
tttuS/O5VOfn2OCtJy+DwnMpnsccpKYZM2bYbWTt2rVpxk+ZMsWOj3Y//Prr